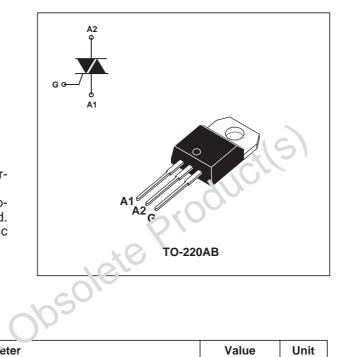


BTA04 T/D/S/A BTB04 T/D/S/A


SENSITIVE GATE TRIACS

FEATURES

- Very low I_{GT} = 10mA max
- Low $I_H = 15 \text{mA max}$
- BTA Family: Insulating voltage = 2500V_(RMS) (UL recognized: E81734)

DESCRIPTION

The BTA/BTB04 T/D/S/A triac family are high performance glass passivated PNPN devices. These parts are suitables for general purpose applications where gate high sensitivity is required. Application on 4Q such as phase control and static switching.

ABSOLUTE RATINGS ((limiting values)
--------------------	-------------------

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current (360° cor duction angle)	BTA	$Tc = 90^{\circ}C$	4	Α
		BTB	$Tc = 95^{\circ}C$		
I _{TSM}	Non repetitive surge peak or i-state current		tp = 8.3ms	42	A
	$(Tj initial = 25^{\circ}C)$			40	
l ² t	l ² t value		tp = 10ms	8	A ² s
dl/dt Critical rate of rise of on-state current Gate supply: Ig = 50mA dlg/dt = 0.1A/µs		Repetitive F = 50Hz	10	A/µs	
		Non repetitive	50		
Tstg Tj	Storage and operating junction temperature range			-40 to +150 -40 to +110	°C
71	Maximum lead soldering temperature during 10s a	260	°C		

Sympho	Symbol Parameter		BTA / BTB04-				
Symbol	Parameter	400 T/D/S/A	600 T/D/S/A	700 T/D/S/A	Unit		
V _{drm} V _{rrm}	Repetitive peak off-state voltage Tj = 110°C	400	600	700	V		

BTA04 T/D/S/A BTB04 T/D/S/A

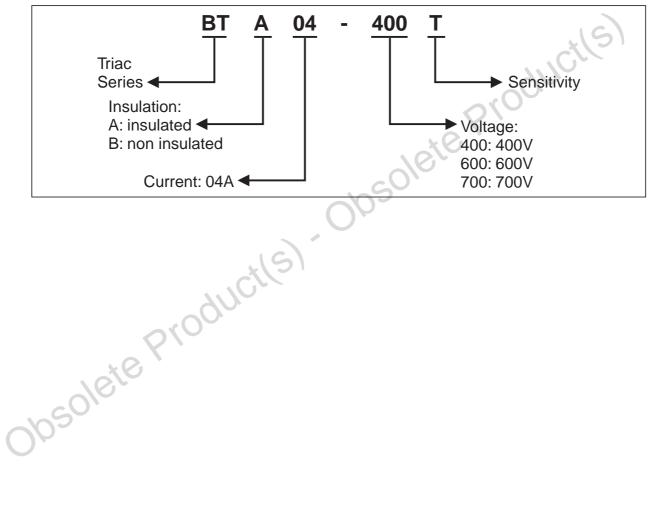
THERMAL RESISTANCE

Symbol	Parameter		Value	Unit
Rth (j-a)	Junction to ambient		60	°C/W
Rth (j-c) DC	Junction to case for DC	BTA	4.4	°C/W
		BTB	3.2	
Rth (j-c) AC	Junction to case for 360° conduction angle (F = 50Hz)	BTA	3.3	°C/W
		BTB	2.4	

GATE CHARACTERISTICS (maximum values)

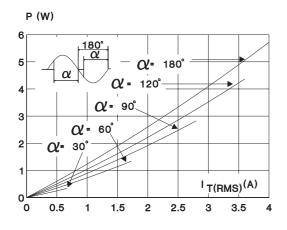
 $P_{G(AV)} = 1W$ $P_{GM} = 40W$ (tp = 20µs) $I_{GM} = 4A$ (tp = 20µs) $V_{GM} = 16V$ (tp = 20µs)

ELECTRICAL CHARACTERISTICS

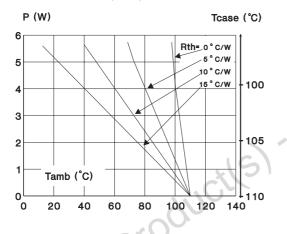

Cumhal	Test conditions		Quadrant		BTA / BTB04				L Inci 4
Symbol	lest conditions	St conditions Quadrant			т	D	S	A	Unit
I _{GT}	$V_D = 12V (DC)$ $R_L = 33\Omega$	Tj = 25°C	- -	MAX.	5	5	10	10	mA
			IV	MAX.	5	10	10	25	
V _{GT}	$V_{D} = 12V (DC) R_{L} = 33\Omega$	Tj = 25°C	I - II - III - IV	MAX.		07	.5		V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 k\Omega$	Tj =110°C	I - II - III - IV	MIN.	X	0	.2		V
tgt	$\label{eq:VD} \begin{array}{l} V_D = V_{DRM} I_G = 40 mA \\ dI_G/dt = 0.5 A/\mu s \end{array}$	Tj = 25°C	- - - V	TYP.	0		2		μs
١L	$I_{G} = 1.2I_{GT}$	Tj = 25°C	I - III - IV	TYP.	10	10	20	20	mA
			ll-		20	20	40	40	
I _H *	I _T = 100mA Gate open	Tj = 25°C		MAX.	15	15	25	25	mA
V _{TM} *	$I_{TM} = 5.5A$ tp = 380µs	Tj = 25°C		MAX.	1.65			V	
I _{DRM}	V _{DRM} rated	Tj = 25°C		MAX.		0.	01		mA
I _{RRM}	V _{RRM} rated	Tj = 110°C		MAX.		0.	75		
dV/dt *	Linear slope up to	Tj = 110°C		TYP.	10	10	-	-	V/µs
	$V_D = 67\% V_{DRM}$ gate open			MIN.	-	-	10	10	
(dl/dt)c*	(dl/dt)c = 1.8A/ms	Tj = 110°C		TYP.	1	1	5	5	V/µs

* For either polarity of electrode A2 voltage with reference to electrode A1

PRODUCT INFORMATION


Deelverre	I _{T(RMS)}	V _{DRM} / V _{RRM}		Sensitivity S	Specification	
Package	Α	v	т	D	S	Α
BTA	4	400	Х			Х
(Insulated)		600	Х	Х		
		700	Х		Х	
BTB		400	Х	Х		
(Uninsulated)		600	х		Х	

ORDERING INFORMATION



BTA04 T/D/S/A BTB04 T/D/S/A

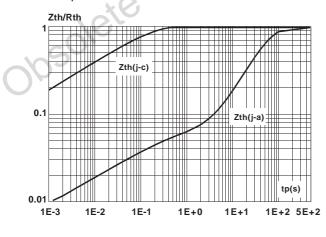
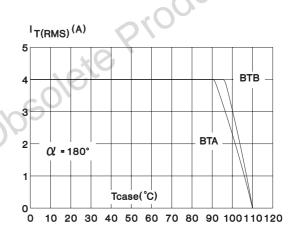

Fig. 1: Maximum RMS power dissipation versus RMS on-state current (F = 50Hz).(Curves are cut off by (dl/dt)c limitation)

Fig. 3: Correlation between maximum RMS power dissipation and maximum allowable temperature (Tamb and Tcase) for different thermal resistances heatsink + contact (BTB).

Fig. 5: Relative variation of thermal impedance versus pulse duration.



4/6

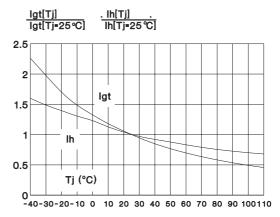

Fig. 2: Correlation between maximum RMS power dissipation and maximum allowable temperature (Tamb and Tcase) for different thermal resistances heatsink + contact (BTA).

Fig. 4: RMS on-state current versus case temperature.

Fig. 6: Relative variation of gate trigger current and holding current versus junction temperature.

47/

Fig. 7: Non repetitive surge peak on-state current versus number of cycles.

Fig. 8: Non repetitive surge peak on-state current for a sinusoidal pulse with width: $t \le 10$ ms, and corresponding value of l^2t .

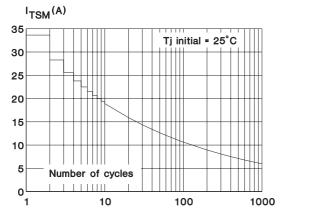
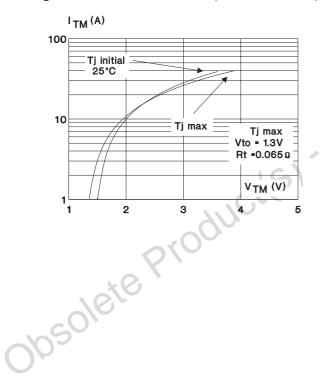
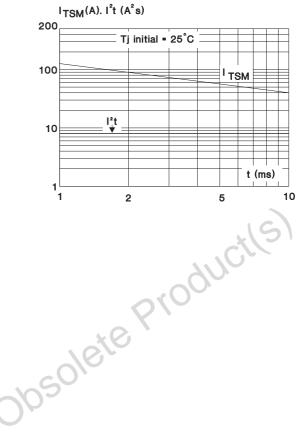
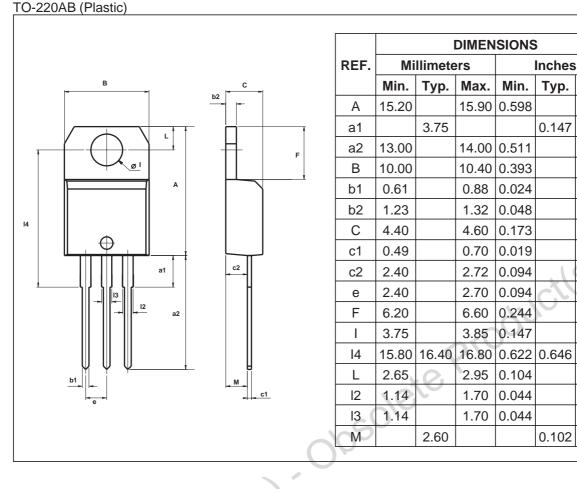




Fig. 9: On-state characteristics (maximum values).



BTA04 T/D/S/A BTB04 T/D/S/A

PACKAGE MECHANICAL DATA

Max.

0.625

0.551

0.409

0.034

0.051

0.181

0.027

0.107 0.106

0.259

0.151

0.661

0.116

0.066

0.066

/

OTHER INFORMATION

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
BTA/BTB04-xxxy	BTA/BTB04-xxxy	TO-220AB	2.3 g	250	Bulk

Epoxy meets UL94,V0

- Cooling method: C
- Recommended torque value: 0.8 m.N.
- Maximum torque value: 1 m.N.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

6/6