

STD2NK100Z STP2NK100Z - STU2NK100Z

N-channel 1000 V, 6.25 Ω, 1.85 A, TO-220, DPAK, IPAK Zener-protected SuperMESH™ Power MOSFET

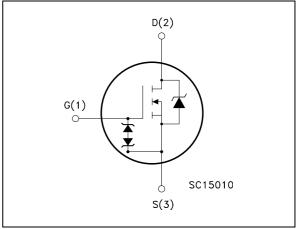
Features

Туре	V _{DSS}	R _{DS(on)} max	I _D	P _{TOT}
STD2NK100Z	1000 V	< 8.5 Ω	1.85 A	70 W
STP2NK100Z	1000 V	< 8.5 Ω	1.85 A	70 W
STU2NK100Z	1000 V	< 8.5 Ω	1.85 A	70 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Very low intrinsic capacitances
- Very good manufacturing repeatability

Application

Switching applications


Description

The SuperMESH[™] series is obtained through an extreme optimization of ST's well established strip-based PowerMESH[™] layout. In addition to pushing on-resistance significantly down, specialties is taken to ensure a very good dv/dt capability for the most demanding application. Such series complements ST full range of high voltage Power MOSFETs.

Table 1.	Device	summary
	001100	ourning y

TO-220	IPAK
	DPAK

Figure 1. Internal schematic diagram

Order codes	Marking	Package	Packaging
STD2NK100Z	2NK100Z	DPAK	Tape and reel
STP2NK100Z	2NK100Z	TO-220	Tube
STU2NK100Z	2NK100Z	IPAK	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data 10
5	Packaging mechanical data 14
6	Revision history

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
	Absolute	maximum	raungs

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	1000	V
V _{GS}	Gate-source voltage	± 30	V
I _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	1.85	А
I _D	Drain current (continuous) at T _C = 100 °C	1.16	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	7.4	А
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	70	W
	Derating factor	0.56	W/°C
V _{ESD(G-S)}	G-S ESD (HBM C=100 pF, R=1.5 kΩ)	3000	V
dv/dt ⁽²⁾	Peak diode recovery voltage slope	2.5	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

1. Pulse width limited by safe operating area

2. $~I_{SD}~\leq$ 1.85 A, di/dt $~\leq~$ 200 A/µs, V_{DD} = 80% $V_{(BR)DSS}$

	Table	3.	Thermal	data
--	-------	----	---------	------

Symbol	Parameter	Value			Unit
Symbol	Symbol I arameter		IPAK	DPAK	Omt
R _{thj-case}	Thermal resistance junction-case max	1.79		°C/W	
R _{thj-pcb}	Thermal resistance junction-pcb minimum footprint	50		°C/W	
R _{thj-amb}	Thermal resistance junction-amb max	62.5	62.5 100		°C/W
TI	Maximum lead temperature for soldering purpose	300			°C

Table 4.Avalanche data

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not-repetitive	1.85	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	170	mJ

1. Pulse width limited by Tjmax

2. Starting Tj = 25°C, $I_D = I_{AR}$, $V_{DD} = 50V$

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	1000			v
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating,Tc=125 °C			1 50	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 30 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 0.9 A		6.25	8.5	Ω

Table 5. On/off states

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 0.9 \text{ A}$		2.4		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0		499 53 9		pF pF pF
C _{oss eq.} ⁽²⁾	Equivalent output capacitance	V_{GS} =0, V_{DS} =0 to 800 V		28		pF
R _G	Gate input resistance	f=1 MHz, open drain		6.6		Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =800 V, I_D = 1.85 A V_{GS} =10 V (see Figure 17)		16 3 9		nC nC nC

1. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%

2. $C_{oss~eq.}$ is defined as constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

	Ownering times					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	V_{DD} = 500 V, I _D = 0.9 A, R _G =4.7 Ω, V _{GS} =10 V (see Figure 16)		7.2 6.5		ns ns
t _{d(off)} t _r	Turn-off delay time Fall time			41.5 32.5		ns ns

Table 7. Switching times

Table 8.Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				1.85 7.4	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 1.85 A, V _{GS} =0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 1.85 A, di/dt= 100 A/μs, V _{DD} = 60 V (<i>see Figure 21</i>)		476 1.6 6.9		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 1.85 A, di/dt= 100 A/μs, V _{DD} = 60 V, Tj=150 °C <i>(see Figure 21)</i>		532 1.9 88		ns μC Α

1. Pulse width limited by package

2. Pulsed: pulse duration = 300µs, duty cycle 1.5%

Table 9.Gate-source zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO} (1)	Gate-source breakdown voltage	I _{GS} = ±1mA (open drain)	30			V

 The built in back-to-back zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated zener diodes thus avoid the usage of external components.

10

10

O,

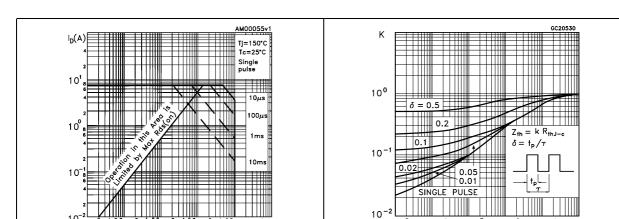
10

Electrical characteristics (curves) 2.1

Safe operating area for TO-220 Figure 2.

Figure 3. Thermal impedance for TO-220

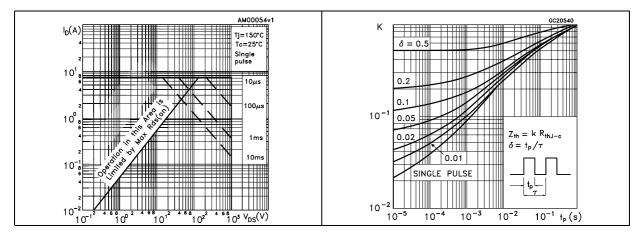
> 10 -5

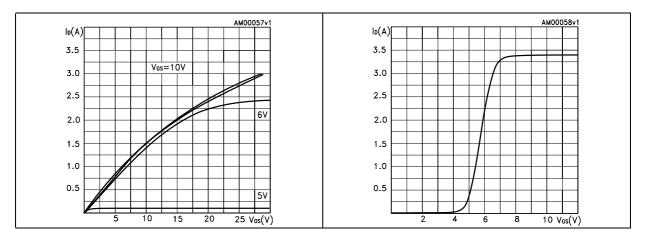

 10^{-4}

 10^{-3}

 10^{-2}

 $10^{-1} t_{p}(s)$


57


1₀₃ V_{DS}(V)

1 0²

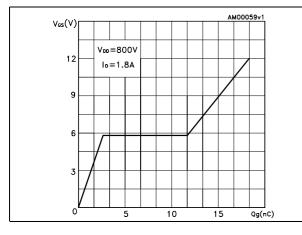
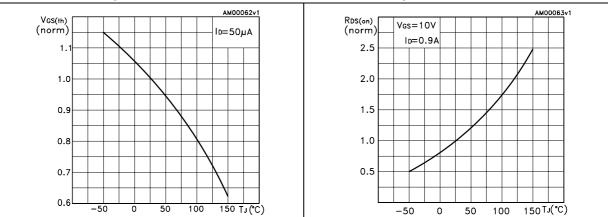

Static drain-source on resistance

Figure 8. Normalized B_{VDSS} vs temperature

AM00061v1 AM00064v1 R_{DS(on)} V(BR)DSS (norm) $V_{GS}=0$ (mΩ) l₀=1mA 7.0 1.2 $V_{GS} = 10V$ 1.1 6.5 1.0 6.0 5.5 0.9 0.8 5.0 50 2.0 -50 0 100 TJ(°C) 0 0.5 1.0 1.5 $I_{D}(A)$

Figure 9.


Figure 10. Gate charge vs gate-source voltage Figure 11. Capacitance variations

C(pF) 400060v1 10³ Ciss 10 Coss 10 Crss 10 10° 101 10² $V_{DS}(V)$ 10

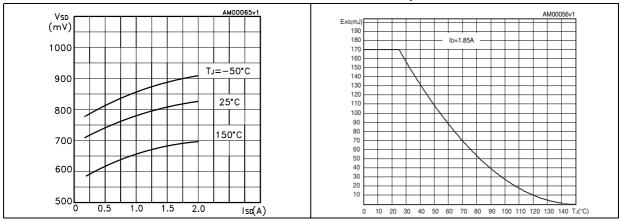
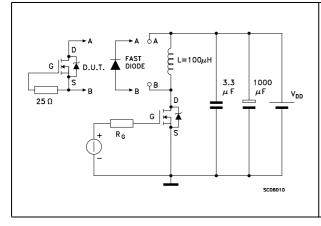

Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on resistance vs temperature

Figure 14. Source-drain diode forward characteristics

Figure 15. Maximum avalanche energy vs temperature



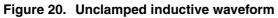

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 18. Test circuit for inductive load switching and diode recovery times

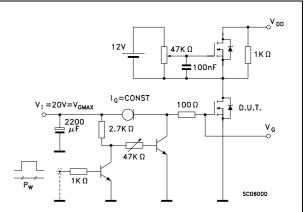


Figure 17. Gate charge test circuit

Figure 19. Unclamped inductive load test circuit

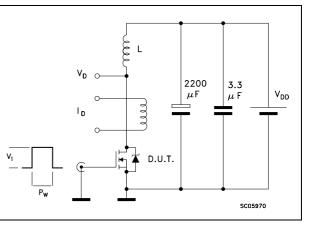
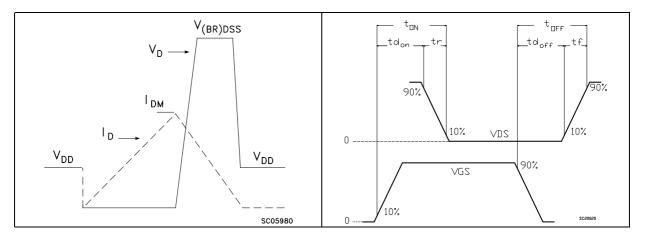
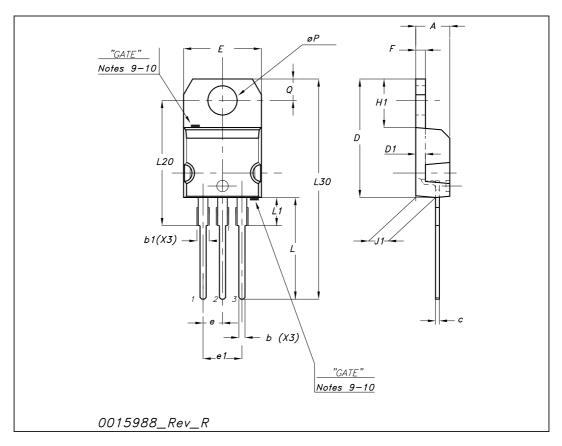



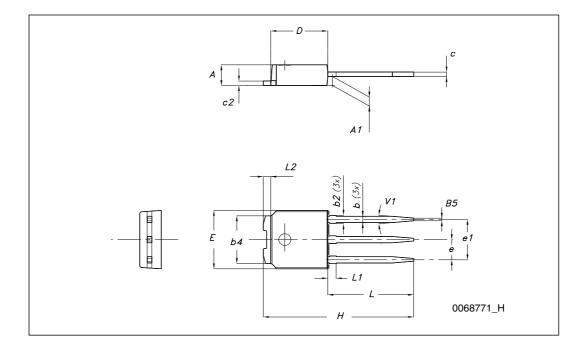
Figure 21. Switching time waveform

57

4 Package mechanical data

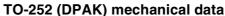

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

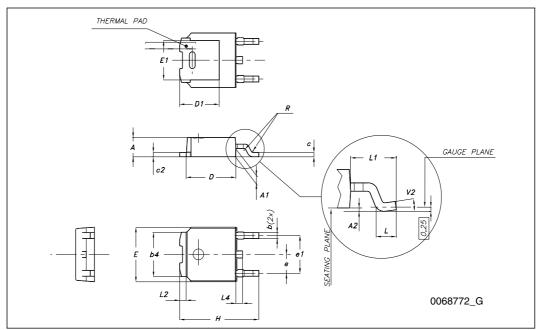
10/16

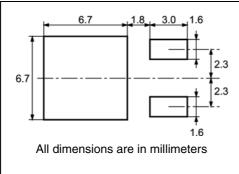


TO-220 mechanical data	
------------------------	--

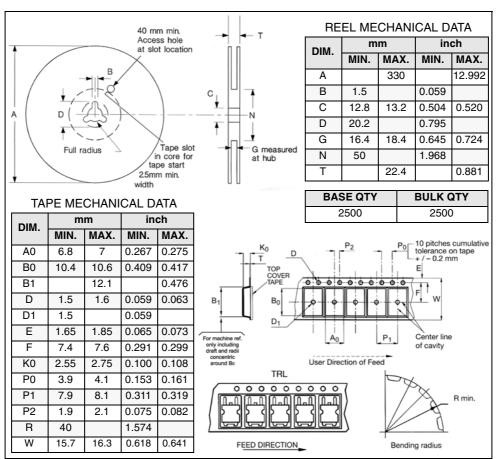
Dim		mm			inch			
Dim	Min	Тур	Max	Min	Тур	Мах		
А	4.40		4.60	0.173		0.181		
b	0.61		0.88	0.024		0.034		
b1	1.14		1.70	0.044		0.066		
С	0.48		0.70	0.019		0.027		
D	15.25		15.75	0.6		0.62		
D1		1.27			0.050			
E	10		10.40	0.393		0.409		
е	2.40		2.70	0.094		0.106		
e1	4.95		5.15	0.194		0.202		
F	1.23		1.32	0.048		0.051		
H1	6.20		6.60	0.244		0.256		
J1	2.40		2.72	0.094		0.107		
L	13		14	0.511		0.551		
L1	3.50		3.93	0.137		0.154		
L20		16.40	1	1	0.645			
L30		28.90			1.137			
ØP	3.75		3.85	0.147		0.151		
Q	2.65		2.95	0.104		0.116		




	TO-251 (IPAK) mechanical data				
DIM.	mm.				
	min.	typ	max.		
A	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
с	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
н		16.10			
L	9.00		9.40		
(L1)	0.80		1.20		
L2		0.80			
V1		10 °			



ім.		mm.	
	min.	typ	max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
с	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0 °		8 °



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

6 Revision history

Table 10. Document revision history

Date Revision		Changes	
24-Oct-2007	1	First release	
18-Jun-2008	2	 Inserted new package, mechanical data IPAK Document status promoted from preliminary data to datasheet. 	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

