IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss.

Features

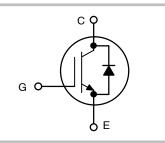
- Low Saturation Voltage using Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 5 µs Short–Circuit Capability
- These are Pb-Free Devices

Typical Applications

- Solar Inverters
- Uninterruptable Power Supply (UPS)

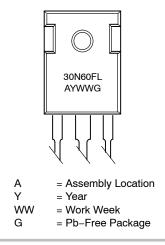
ABSOLUTE MAXIMUM RATINGS

Symbol V _{CES} I _C	Value 600	Unit V
	600	V
Ι _C		
	60 30	A
I _{CM}	120	A
IF	60 30	A
I _{FM}	120	A
t _{SC}	5	μs
V _{GE}	±20 ±30	V
P _D	250 67	W
TJ	–55 to +150	°C
T _{stg}	–55 to +150	°C
T _{SLD}	260	°C
	I _F I _{FM} t _{SC} V _{GE} P _D T _J	$\begin{array}{c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

30 A, 600 V V_{CEsat} = 1.65 V

MARKING DIAGRAM

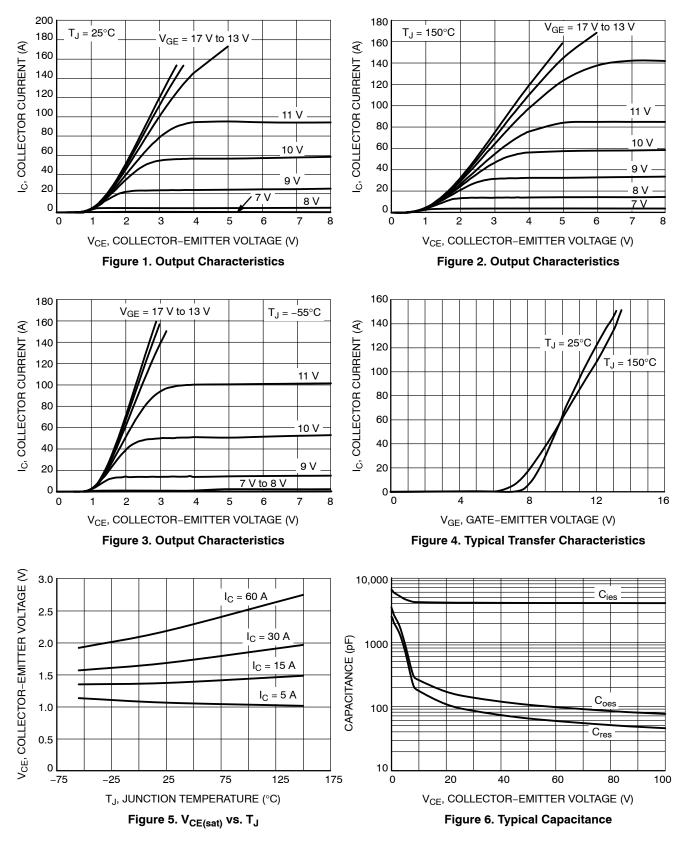
ORDERING INFORMATION

Device	Package	Shipping
NGTB30N60FLWG	TO–247 (Pb–Free)	30 Units / Rail

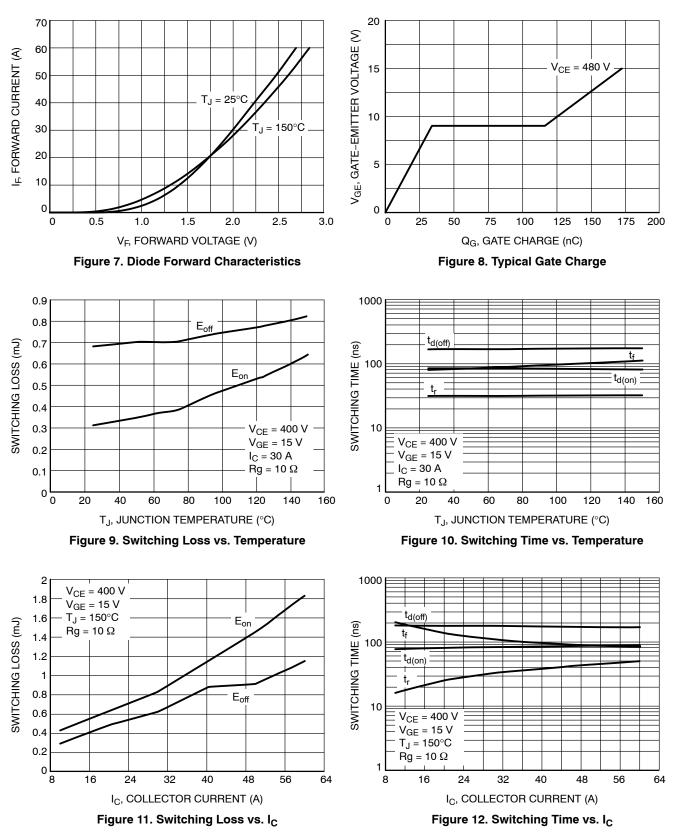
© Semiconductor Components Industries, LLC, 2013 June, 2013 – Rev. 1

THERMAL CHARACTERISTICS

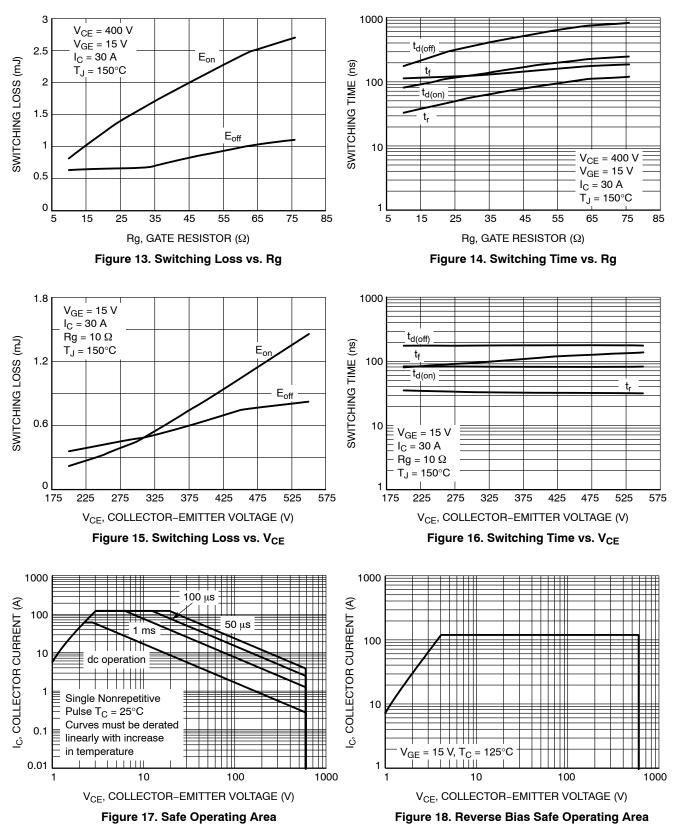
Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ ext{ heta}JC}$	0.486	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ ext{ heta}JC}$	1.06	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

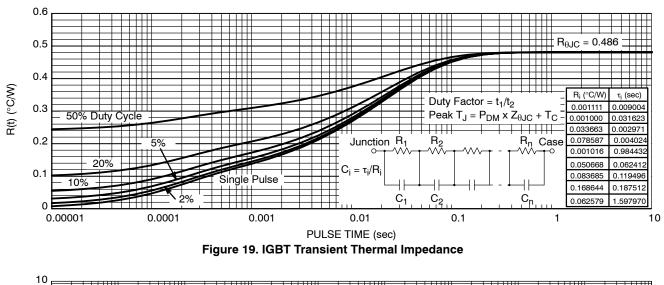

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	·			•	•	-
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 µA	V _{(BR)CES}	600	-	_	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 30 A V_{GE} = 15 V, I _C = 30 A, T _J = 150°C	V _{CEsat}	1.4 _	1.65 2.0	1.9 _	V
Gate-emitter threshold voltage	V_{GE} = V_{CE} , I_C = 200 μ A	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$\label{eq:VGE} \begin{array}{l} V_{GE} = 0 \ V \!, V_{CE} = 600 \ V \\ V_{GE} = 0 \ V \!, V_{CE} = 600 \ V \!, T_{J} = 150^{\circ} C \end{array}$	I _{CES}	-		0.2 2	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V , V_{CE} = 0 V	I _{GES}	_	-	100	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		C _{ies}	-	4200	_	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	_	170	_	
Reverse transfer capacitance		C _{res}	_	110	-	
Gate charge total		Qg	_	170	-	nC
Gate to emitter charge	V_{CE} = 480 V, I _C = 30 A, V _{GE} = 15 V	Q _{ge}	-	34	-	
Gate to collector charge		Q _{gc}	-	83	-	
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-on delay time		t _{d(on)}	_	83	-	ns
Rise time		tr	-	31	-	
Turn-off delay time	T _J = 25°C	t _{d(off)}	_	170	-	
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 30 \text{ A}$ $R_{g} = 10 \Omega$	t _f	-	80	-	
Turn-on switching loss	V _{GE} = 0 V/ 15 V	E _{on}	-	0.7	-	mJ
Turn-off switching loss	1	E _{off}	-	0.28	-	
Total switching loss		E _{ts}	-	0.98	-	
Turn-on delay time		t _{d(on)}	-	81	-	ns
Rise time		tr	-	32	-	
Turn-off delay time	$T_J = 150^{\circ}C$ $V_{CC} = 400 \text{ V, } I_C = 30 \text{ A}$ $R_g = 10 \Omega$	t _{d(off)}	-	180	-	
Fall time		t _f	-	110	-	
Turn-on switching loss	V _{GE} = 0 V/ 15 V	E _{on}	-	0.82	-	mJ
Turn-off switching loss]	E _{off}	-	0.63	I	
Total switching loss	7	E _{ts}	_	1.45	-	


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC						
Forward voltage	V_{GE} = 0 V, I _F = 30 A V_{GE} = 0 V, I _F = 30 A, T _J = 150°C	V _F	1.45 -	1.9 2.0	2.35 -	V
Reverse recovery time	T.I = 25°C	t _{rr}	-	72	-	ns
Reverse recovery charge	I _F = 30 Å, V _R = 200 V	Q _{rr}	-	0.25	-	μC
Reverse recovery current	di _F /dt = 200 A/µs	I _{rrm}	-	6	-	А


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

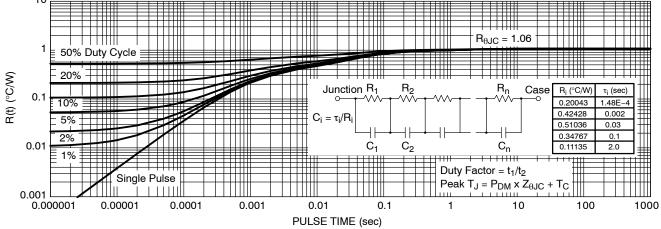


Figure 20. Diode Transient Thermal Impedance

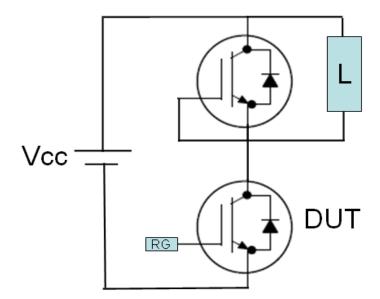


Figure 21. Test Circuit for Switching Characteristics

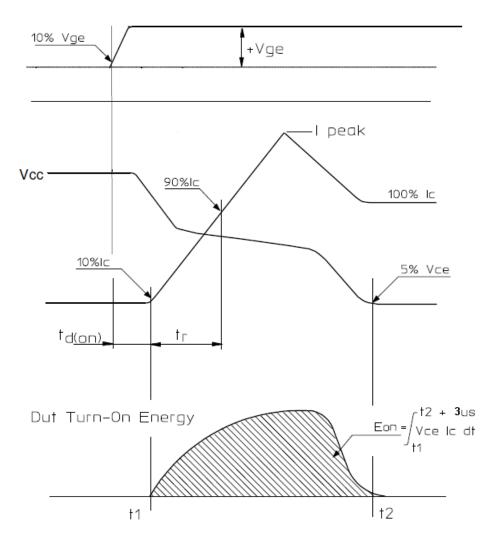
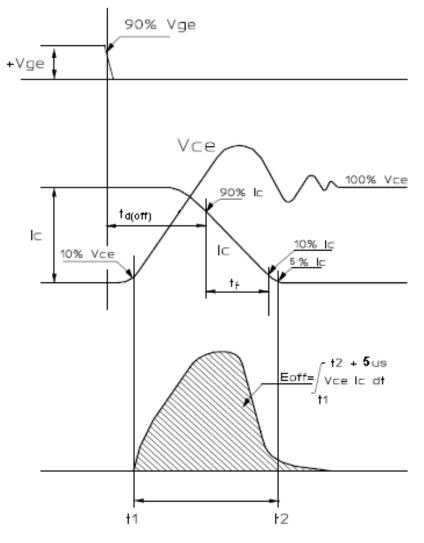
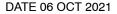


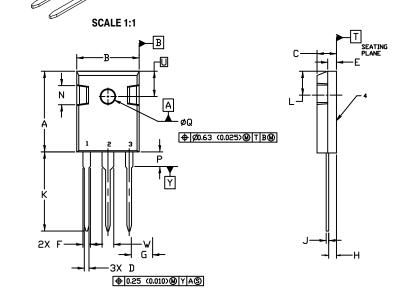
Figure 22. Definition of Turn On Waveform



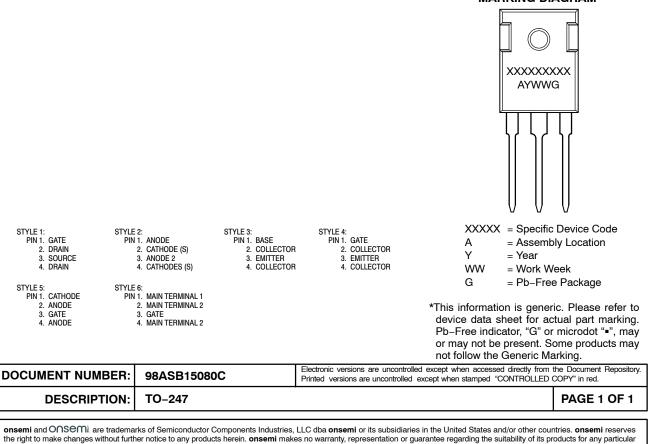

Figure 23. Definition of Turn Off Waveform

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS



TO-247 CASE 340L ISSUE G



- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
Е	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15	6.15 BSC		BSC
W	2.87	3.12	0.113	0.123

GENERIC **MARKING DIAGRAM***

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥