ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

HGT1S7N60A4S9A, HGTG7N60A4 HGTP7N60A4

Data Sheet

September 2004

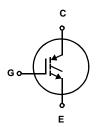
600V, SMPS Series N-Channel IGBT

The HGT1S7N60A4S9A, HGTG7N60A4 and HGTP7N60A4 are MOS gated high voltage switching devices combining the best features of MOSFETs and bipolar transistors. These devices have the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between 25°C and 150°C.

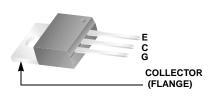
This IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential. This device has been optimized for high frequency switch mode power supplies.

Formerly Developmental Type TA49331.

Ordering Information


PART NUMBER	PACKAGE	BRAND
HGT1S7N60A4S9A	TO-263AB	G7N60A4
HGTG7N60A4	TO-247	G7N60A4
HGTP7N60A4	TO-220AB	G7N60A4

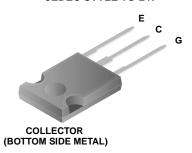
NOTE: When ordering, use the entire part number.


Features

- >100kHz Operation at 390V, 7A
- · 200kHz Operation at 390V, 5A
- 600V Switching SOA Capability
- Low Conduction Loss

Symbol

JEDEC TO-220AB



JEDEC TO-263AB

Packaging

JEDEC STYLE TO-247

HGT1S7N60A4S9A, HGTG7N60A4, HGTP7N60A4

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	ALL TYPES	UNITS
Collector to Emitter Voltage	600	V
Collector Current Continuous		
At $T_C = 25^{\circ}C$ I_{C25}	34	Α
At $T_C = 110^{\circ}C$	14	Α
Collector Current Pulsed (Note 1)	56	Α
Gate to Emitter Voltage ContinuousV _{GES}	±20	V
Gate to Emitter Voltage Pulsed	±30	V
Switching Safe Operating Area at T _J = 150 ^o C, Figure 2	35A at 600V	
Single Pulse Avalanche Energy at $T_C = 25^{\circ}C$ E_{AS}	25mJ at 7A	
Power Dissipation Total at T _C = 25°C	125	W
Power Dissipation Derating T _C > 25 ^o C	1.0	W/oC
Operating and Storage Junction Temperature Range	-55 to 150	°С
Maximum Lead Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°C
Package Body for 10s, See Tech Brief 334	260	°С

CAUTION: Stresses above those listed in "Device Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. Pulse width limited by maximum junction temperature.

Electrical Specifications $T_J = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector to Emitter Breakdown Voltage	BV _{CES}	I _C = 250μA, V _{GE} = 0V		600	-	-	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I _C = -10mA, V _{GE} = 0V		20	-	-	V
Collector to Emitter Leakage Current	I _{CES}	V _{CE} = 600V	$T_J = 25^{\circ}C$	-	-	250	μА
			$T_{J} = 125^{\circ}C$	-	-	2	mA
Collector to Emitter Saturation Voltage	V _{CE} (SAT)	I _C = 7A, V _{GE} = 15V	$T_J = 25^{\circ}C$	-	1.9	2.7	V
			$T_{J} = 125^{\circ}C$	-	1.6	2.2	V
Gate to Emitter Threshold Voltage	V _{GE(TH)}	I _C = 250μA, V _{CE} = 600V		4.5	5.9	7.0	V
Gate to Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±250	nA
Switching SOA	SSOA	$T_J = 150^{\circ}C$, $R_G = 25\Omega$, $V_{GE} = 15V$ L = 100 μ H, $V_{CE} = 600V$		35	-	-	А
Pulsed Avalanche Energy	E _{AS}	I _{CE} = 7A, L = 500μH		25	-	-	mJ
Gate to Emitter Plateau Voltage	V _{GEP}	I _C = 7A, V _{CE} = 300V		-	9.0	-	V
On-State Gate Charge	Q _{g(ON)}	I _C = 7A, V _{CE} = 300V	V _{GE} = 15V	-	37	45	nC
			V _{GE} = 20V	-	48	60	nC
Current Turn-On Delay Time	t _d (ON)I	IGBT and Diode at $T_J = 25^{\circ}C$ $I_{CE} = 7A$ $V_{CE} = 390V$ $V_{GE} = 15V$ $R_G = 25\Omega$ $L = 1 \text{mH}$ Test Circuit (Figure 20)		-	11	-	ns
Current Rise Time	t _{rl}			-	11	-	ns
Current Turn-Off Delay Time	t _d (OFF)I			-	100	-	ns
Current Fall Time	t _{fl}			-	45	-	ns
Turn-On Energy (Note 2)	E _{ON1}			-	55	-	μЈ
Turn-On Energy (Note 2)	E _{ON2}			-	120	150	μJ
Turn-Off Energy (Note 3)	E _{OFF}			-	60	75	μJ

HGT1S7N60A4S9A, HGTG7N60A4, HGTP7N60A4

Electrical Specifications T_J = 25°C, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Current Turn-On Delay Time	t _d (ON)I	IGBT and Diode at T _J = 125 ^o C	-	10	-	ns
Current Rise Time	t _{rl}	$I_{CE} = 7A$ $V_{CE} = 390V$ $V_{GE} = 15V$ $R_G = 25\Omega$ $L = 1mH$ Test Circuit (Figure 20)	-	7	-	ns
Current Turn-Off Delay Time	t _d (OFF)I		-	130	150	ns
Current Fall Time	t _{fl}		-	75	85	ns
Turn-On Energy (Note 2)	E _{ON1}		-	50	-	μЈ
Turn-On Energy (Note 2)	E _{ON2}		-	200	215	μЈ
Turn-Off Energy (Note 3)	E _{OFF}		-	125	170	μJ
Thermal Resistance Junction To Case	$R_{ heta JC}$		-	-	1.0	oC/W

NOTES:

- 2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E_{ON1} is the turn-on loss of the IGBT only. E_{ON2} is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_J as the IGBT. The diode type is specified in
- 3. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves Unless Otherwise Specified

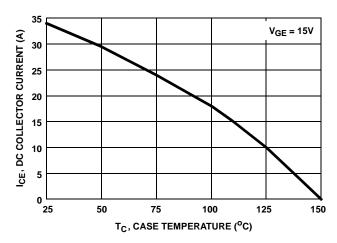


FIGURE 1. DC COLLECTOR CURRENT vs CASE **TEMPERATURE**

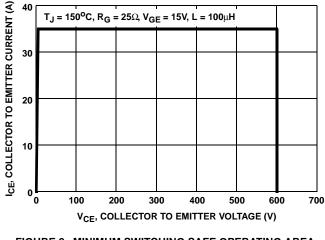


FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA

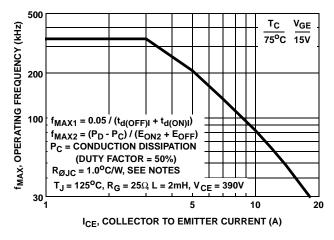


FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO **EMITTER CURRENT**

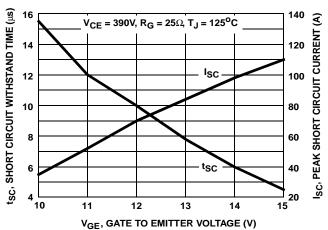


FIGURE 4. SHORT CIRCUIT WITHSTAND TIME

Typical Performance Curves Unless Otherwise Specified (Continued)

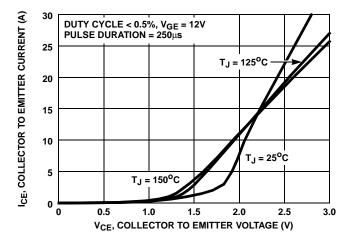


FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

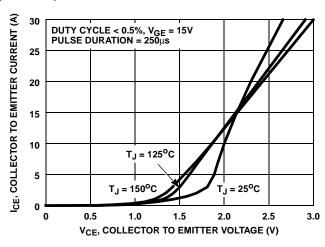


FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

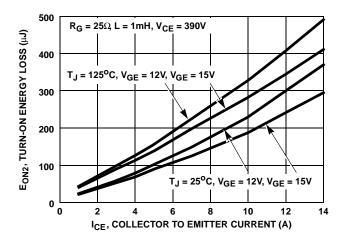


FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

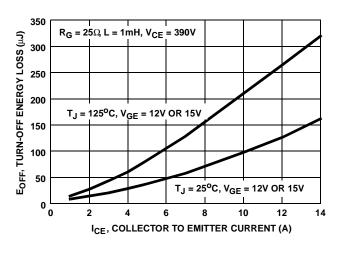


FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

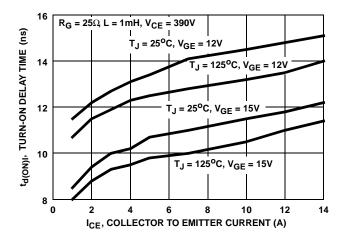


FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO EMITTER CURRENT

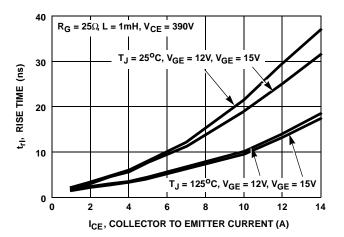


FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO EMITTER CURRENT

Typical Performance Curves Unless Otherwise Specified (Continued)

 $T_J = 25^{\circ}C$

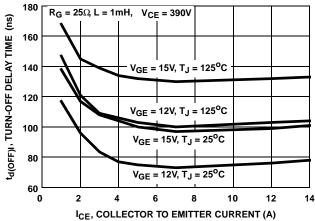


FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

DUTY CYCLE < 0.5%, V_{CE} = 10V

PULSE DURATION = 250µs

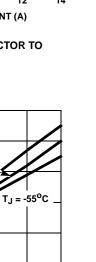


FIGURE 13. TRANSFER CHARACTERISTIC

VGE, GATE TO EMITTER VOLTAGE (V)

 $T_J = 125^{\circ}C$

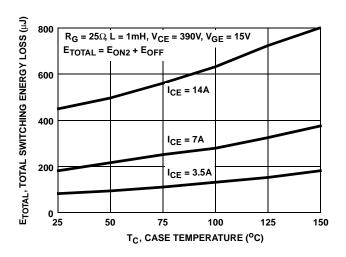


FIGURE 15. TOTAL SWITCHING LOSS vs CASE TEMPERATURE

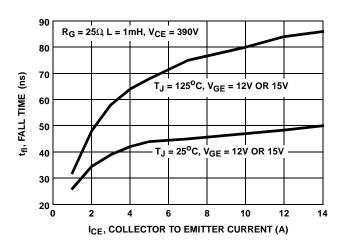


FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER CURRENT

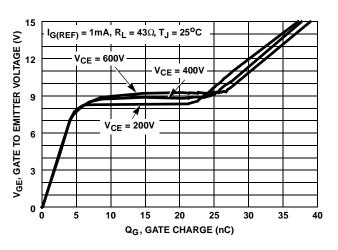


FIGURE 14. GATE CHARGE WAVEFORMS

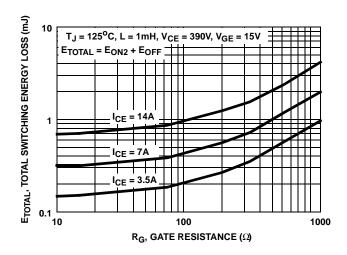


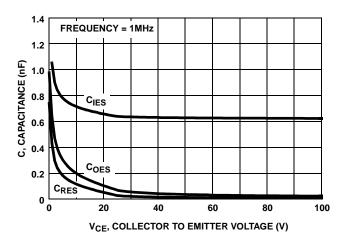
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE

CE, COLLECTOR TO EMITTER CURRENT (A)

120

100

80


60

40

20

8

Typical Performance Curves Unless Otherwise Specified (Continued)

 V_CE , COLLECTOR TO EMITTER VOLTAGE (V) 2.8 DUTY CYCLE < 0.5%, T_J = 25° C PULSE DURATION = 250μs, 2.6 2.4 I_{CE} = 14A 2.2 I_{CE} = 7A 2.0 I_{CE} = 3.5A 1.8 10 15 16 V_{GE}, GATE TO EMITTER VOLTAGE (V)

FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE

FIGURE 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE VS GATE TO EMITTER VOLTAGE

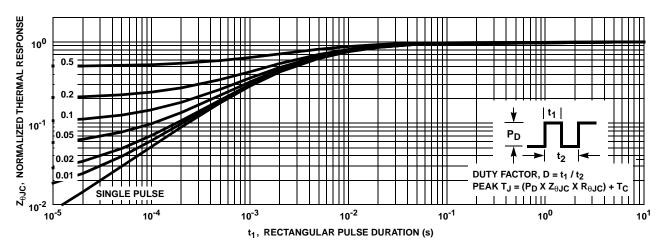


FIGURE 19. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

Test Circuit and Waveforms



FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT

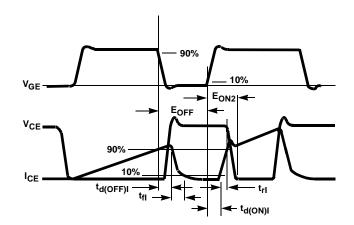


FIGURE 21. SWITCHING TEST WAVEFORMS

HGT1S7N60A4S9A, HGTG7N60A4, HGTP7N60A4

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

- Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBD LD26" or equivalent.
- When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
- 3. Tips of soldering irons should be grounded.
- Devices should never be inserted into or removed from circuits with power on.
- Gate Voltage Rating Never exceed the gate-voltage rating of V_{GEM}. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
- 6. Gate Termination The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
- Gate Protection These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_CE) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f_{MAX1} or f_{MAX2} ; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/(t_{d(OFF)I} + t_{d(ON)I})$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{d(OFF)I}$ and $t_{d(ON)I}$ are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than T_{LIM} .

 f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C)/(E_{OFF} + E_{ON2}).$ The allowable dissipation (P_D) is defined by $P_D = (T_{JM} - T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed $P_D.$ A 50% duty factor was used (Figure 3) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \times I_{CE})/2.$

 E_{ON2} and E_{OFF} are defined in the switching waveforms shown in Figure 21. E_{ON2} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-on and E_{OFF} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-off. All tail losses are included in the calculation for E_{OFF} ; i.e., the collector current equals zero ($I_{CE} = 0$).

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative