

STP36N55M5 STW36N55M5

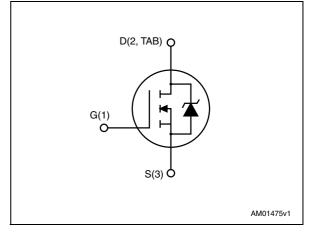
Datasheet — production data

N-channel 550 V, 0.06 Ωtyp., 33 A MDmesh[™] V Power MOSFET in TO-220 and TO-247 packages

Features

Order codes	V _{DSS} @ T _{Jmax}	R _{DS(on)} max	I _D
STP36N55M5	600 V	< 0.08 Ω	33 A
STW36N55M5	000 V	< 0.00 32	50 A

- Worldwide best R_{DS(on)} * area
- Higher V_{DSS} rating and high dv/dt capability
- Excellent switching performance
- 100% avalanche tested


Applications

Switching applications

Description

These devices are N-channel MDmesh[™] V Power MOSFETs based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH[™] horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STP36N55M5	36N55M5	TO-220	Tube
STW36N55M5	CINCCINC	TO-247	Tube

October 2012

Doc ID 022902 Rev 2

www.st.com

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Revision history1	4

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
Ι _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	33	А
Ι _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	20.8	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	132	Α
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	190	W
dv/dt ⁽¹⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	150	°C

1. $I_{SD} \leq 33$ A, di/dt ≤ 400 A/µs; $V_{DS(Peak)} < V_{(BR)DSS}$, $V_{DD} = 340$ V.

Table 3. Thermal data

Symbol	Parameter	Value		Value Unit	
Symbol	Falameter	TO-220	TO-247	Onit	
R _{thj-case}	Thermal resistance junction-case max	e max 0.66		°C/W	
R _{thj-amb}	Thermal resistance junction-ambient max	62.5 50		°C/W	

Table 4.Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	7	А
E _{AS}	Single pulse avalanche energy (starting $T_J=25^{\circ}C$, $I_D=I_{AR}$; $V_{DD}=50 V$)	510	mJ

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	550			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 550 V V _{DS} = 550 V, T _C =125 °C			1 100	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 16.5 A		0.06	0.08	Ω

Table 5. On /off states

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0	-	2670 75 6.6	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 440 V, V _{GS} = 0	-	192	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	v _{DS} = 0 10 440 v, v _{GS} = 0	-	71	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.85	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 440 \text{ V}, I_D = 16.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 18</i>)	-	62 15 27	-	nC nC nC

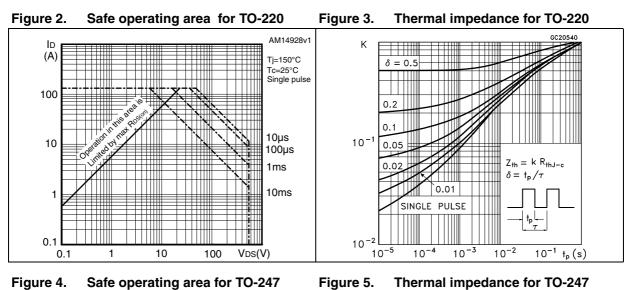
1. Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

iable ii	e mile mile e					
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
$\begin{array}{c} t_{d(V)} \\ t_{r(V)} \\ t_{f(i)} \\ t_{c(off)} \end{array}$	Voltage delay time Voltage rise time Current fall time Crossing time	$V_{DD} = 400 \text{ V}, \text{ I}_D = 22 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 19</i> and <i>Figure 22</i>)	-	56 13 13 17	-	ns ns ns ns

Table 7. Switching times

Table 8.Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		33 132	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 33 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 33 A, di/dt = 100 A/µs V _{DD} = 100 V (see <i>Figure 22</i>)	-	334 5 31		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 33 A, di/dt = 100 A/μs V _{DD} = 100 V, T _j = 150 °C (see <i>Figure 22</i>)	-	406 7 35		ns μC Α

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

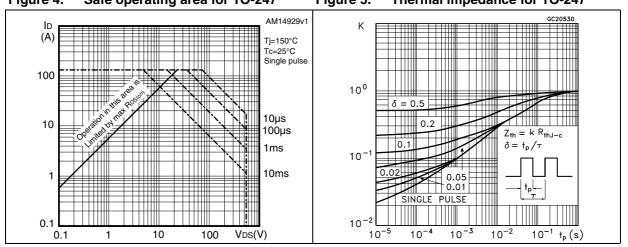
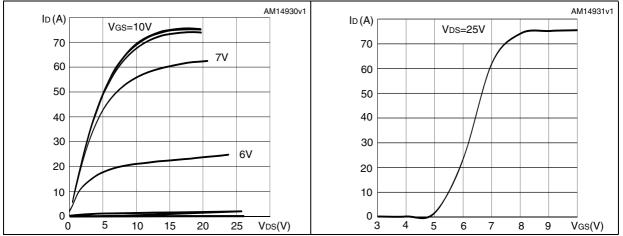



Figure 7. Transfer characteristics

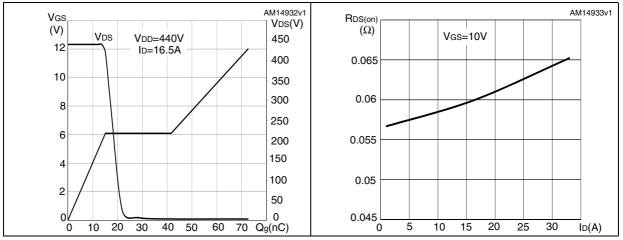
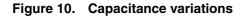



Figure 8. Gate charge vs gate-source voltage Figure 9. Static drain-source on-resistance

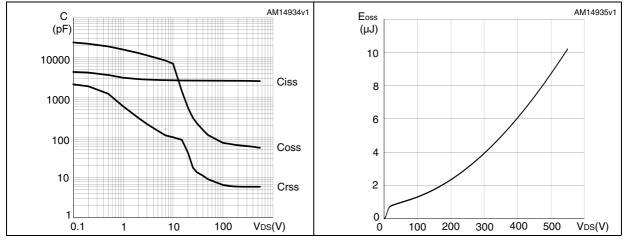
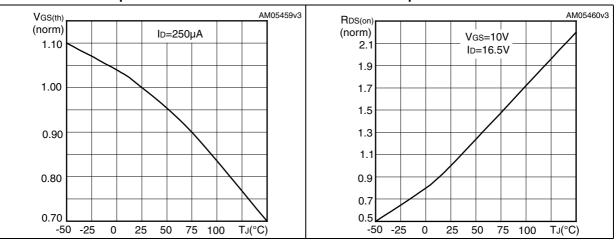



Figure 12. Normalized gate threshold voltage Figure 13. Norm vs temperature temperature

Normalized on-resistance vs temperature

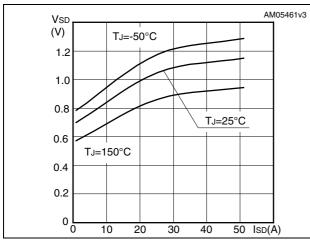
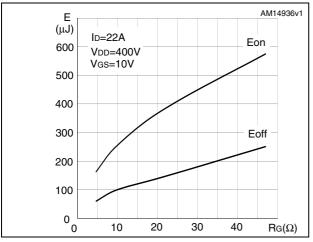
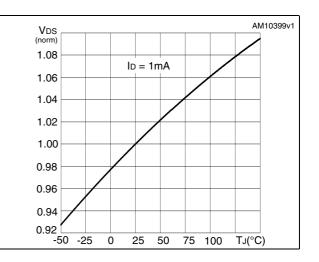



Figure 16. Switching losses vs gate resistance



1. Eon including reverse recovery of a SiC diode

8/15

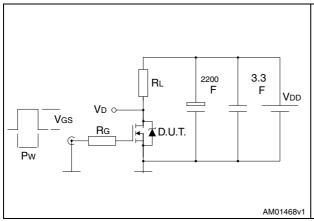

57

Figure 15. Normalized B_{VDSS} vs temperature

3 Test circuits

Figure 17. Switching times test circuit for resistive load

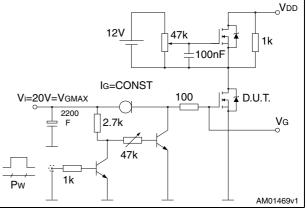
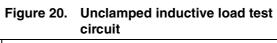



Figure 18. Gate charge test circuit

Figure 19. Test circuit for inductive load switching and diode recovery times

I

J

D.U.T.

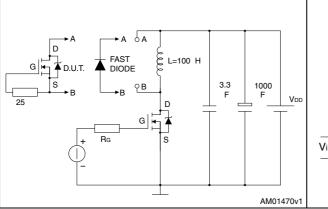
2200

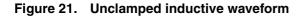
F

3.3

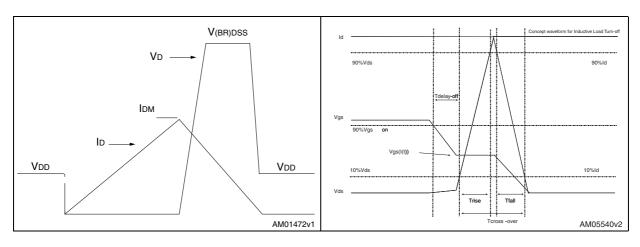
F

Vdd


AM01471v1


VD O

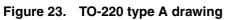
lр


Pw

0

Doc ID 022902 Rev 2

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK is an ST trademark.

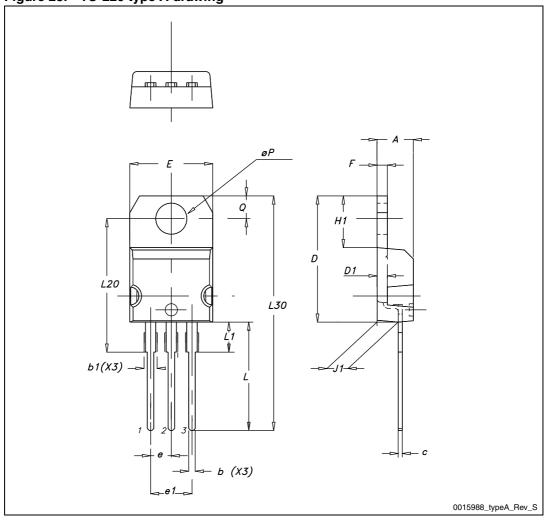

Dim		mm	
Dim. —	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

Table 9.TO-220 type A mechanical data

Dim		mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Table 10.TO-247 mechanical data

12/15

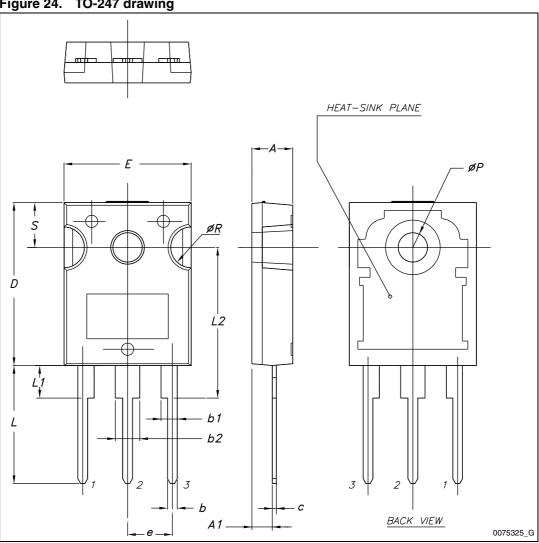


Figure 24. TO-247 drawing

5 Revision history

Table 11.Document revision history

Date	Revision	Changes
07-Mar-2012	1	First release.
23-Oct-2012	2	Document status promoted from preliminary data to production data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022902 Rev 2