

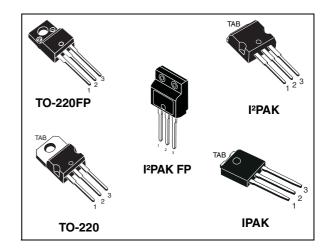
STF6N62K3, STFI6N62K3, STI6N62K3, STP6N62K3, STU6N62K3

N-channel 620 V, 0.95 Ωtyp., 5.5 A SuperMESH3[™] Power MOSFET in TO-220FP, I²PAKFP, I²PAK, TO-220, IPAK packages

Features

Order codes	V_{DSS}	R _{DS(on)} max.	I _D	P _{TOT}
STF6N62K3				30 W
STFI6N62K3				30 W
STI6N62K3	620 V	< 1.2 Ω	5.5 A	90 W
STP6N62K3				90 W
STU6N62K3				90 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected


Applications

Switching applications

Description

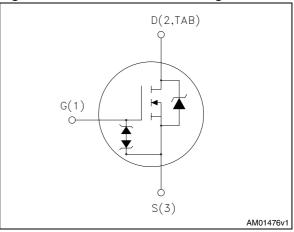

These SuperMESH3[™] Power MOSFETs are the result of improvements applied to STMicroelectronics' SuperMESH[™] technology, combined with a new optimized vertical structure. These devices boast an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering them suitable for the most demanding applications.

Table 1.	Device summary
----------	----------------

Datasheet – production data

Figure 1. Internal schematic diagram

Order codes	Marking	Package	Packaging
STF6N62K3		TO-220FP	
STFI6N62K3		I ² PAKFP	
STI6N62K3	6N62K3	I ² PAK	Tube
STP6N62K3		TO-220	
STU6N62K3		IPAK	

August 2012

Doc ID 14676 Rev 4

1/19

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data 10
5	Revision history

1 Electrical ratings

Symbol	Parameter	TO-220FP I ² PAKFP	I ² PAK TO-220	IPAK	Unit		
V_{DS}	Drain-source voltage		620		V		
V _{GS}	Gate- source voltage		± 30		V		
I _D	Drain current (continuous) at T _C = 25 °C	5.5 ⁽¹⁾	5.5		Α		
I _D	Drain current (continuous) at T _C = 100 °C	3 (1)	3		Α		
I _{DM} ⁽²⁾	Drain current (pulsed)	22 (1)	22		22		Α
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	30	90		W		
I _{AR} ⁽³⁾	Avalanche current, repetitive or not-repetitive		5.5		Α		
E _{AS} ⁽⁴⁾	Single pulse avalanche energy		140		mJ		
ESD	Gate-source human body model (R=1.5 kΩ C=100 pF)		2.5		kV		
dv/dt ⁽⁵⁾	Peak diode recovery voltage slope		12		V/ns		
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500	2500		v		
T _{stg}	Storage temperature	-5	5 to 150		°C		
Тj	Max. operating junction temperature		150				

Table 2. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by safe operating area.

3. Pulse width limited by Tj max.

4. Starting Tj = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

5. $I_{SD} \leq 5.5$ A, di/dt ≤ 400 A/µs, $V_{DD} = 80\% V_{(BR)DSS}$, $V_{DSpeak} \leq V_{(BR)DSS}$.

Table 3. Thermal data

Symbol	Parameter	TO-220FP I ² PAKFP	I²PAK TO-220	IPAK	Unit
R _{thj-case}	Thermal resistance junction-case max.	4.17	1.39		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	62.5		100	°C/W

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	620			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 620 V V _{DS} = 620 V, T _C =125 °C			0.8 50	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 9	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 2.8 A		0.95	1.2	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 50 V, f = 1 MHz, V _{GS} = 0	-	875 100 17	-	pF pF pF
C _{oss(er)} ⁽¹⁾	Equivalent output capacitance energy related	$V_{GS} = 0, V_{DS} = 0$ to 480 V	-	28	-	pF
C _{oss(tr)} ⁽²⁾	Equivalent output capacitance time related		-	63	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	3.5	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 496 \text{ V}, I_D = 5.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 20</i>)	-	34 4 22	-	nC nC nC

1. Is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. Is defined as a constant equivalent capacitance giving the same storage energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

	•••••••					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 310 \text{ V}, I_D = 2.75 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 19</i>)	-	22 12 49 20	-	ns ns ns ns

Table 6. Switching times

Table 7.Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		5.5 27	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 5.5 \text{ A}, V_{GS} = 0$	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 5.5 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 24</i>)	-	290 1.9 13.5		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 5.5 A, di/dt = 100 A/μs V _{DD} = 60 V, T _j = 150 °C (see <i>Figure 24</i>)	-	335 2.4 14.5		ns μC Α

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = 300 µs, duty cycle 1.5%

Table 8.	Gate-source	Zener	diode

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
`		Gate-source breakdown voltage (I _D = 0)	lgs=± 1 mA	30		-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components

lр

2.1 **Electrical characteristics (curves)**

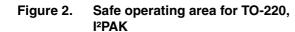


Figure 3. Thermal impedance for TO-220,

0.2

0.1

0.05

0.02

 $Z_{th} = k R_{thJ-c}$

 $10^{-1} t_{p}(s)$

 $\delta = t_p / \tau$

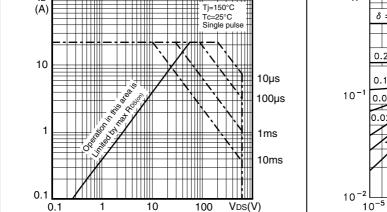
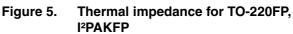
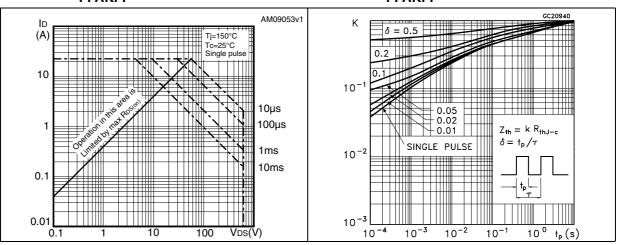
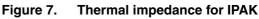



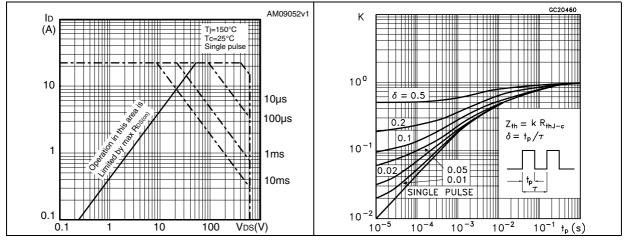
Figure 4. Safe operating area for TO-220FP, **I**²**PAKFP**



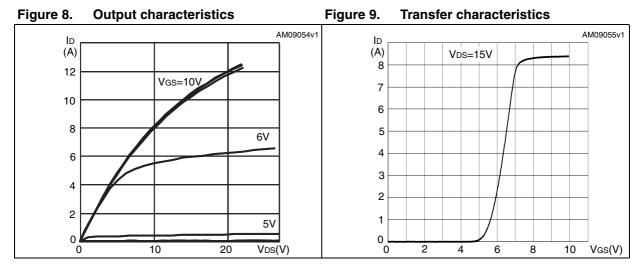
10⁻²

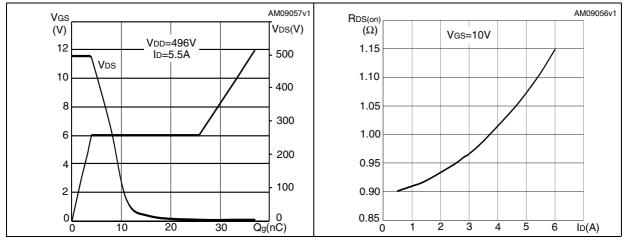
 10^{-3}


0.01 SINGLE PULSE


 10^{-4}

AM09051v1





Doc ID 14676 Rev 4

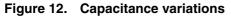
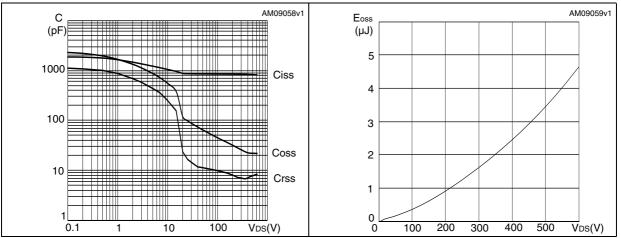
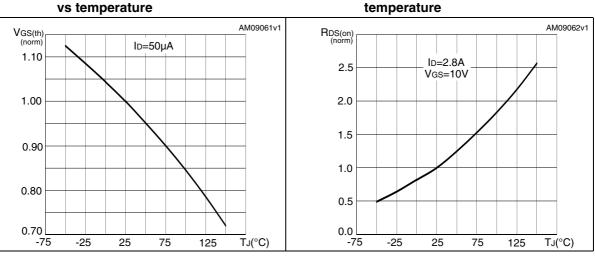
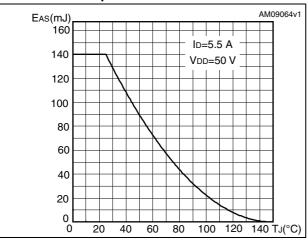
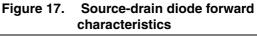



Figure 13. Output capacitance stored energy

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on-resistance vs vs temperature temperature


Figure 16. Normalized B_{VDSS} vs temperature

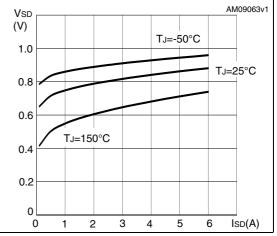
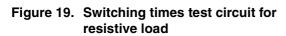
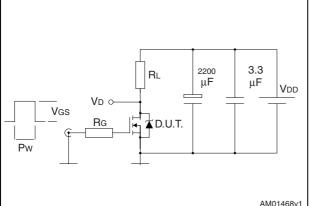


Figure 18. Maximum avalanche energy vs temperature





3 Test circuits

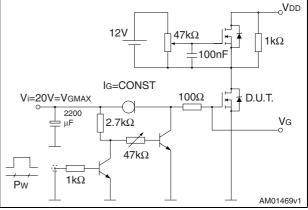


Figure 22. Unclamped Inductive load test

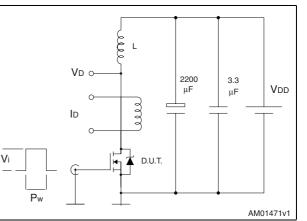
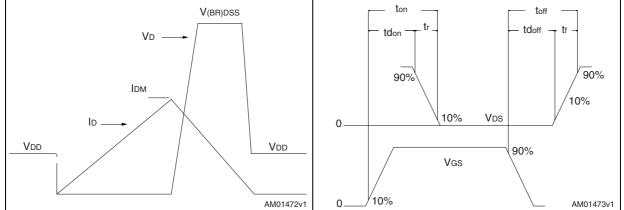

circuit

Figure 20. Gate charge test circuit

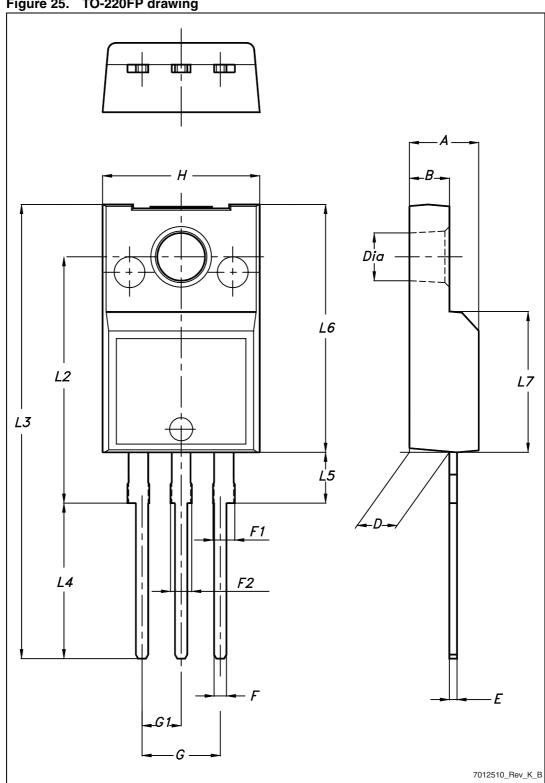

Figure 21. Test circuit for inductive load switching and diode recovery times

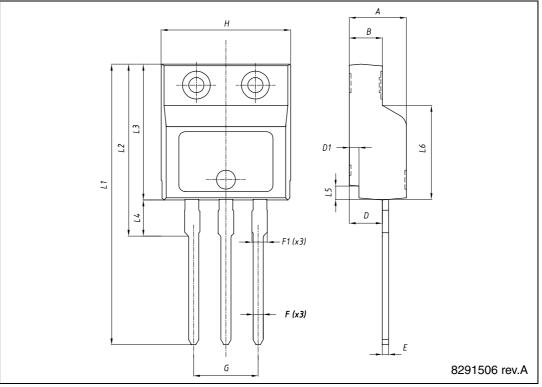
4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim.	mm			
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

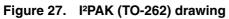
Table 9. TO-220FP mechanical data

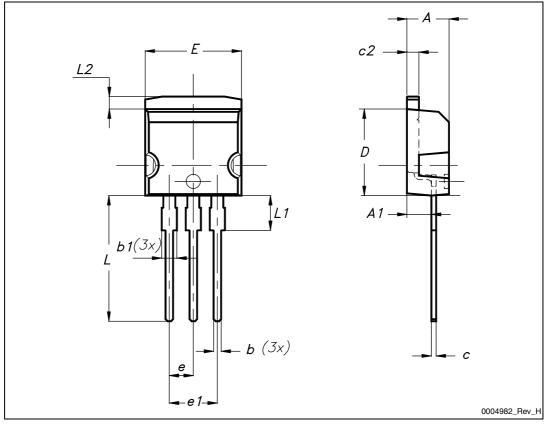



Figure 25. TO-220FP drawing

Dim.				
	Min.	Тур.	Max.	
А	4.40		4.60	
В	2.50		2.70	
D	2.50		2.75	
D1	0.65		0.85	
E	0.45		0.70	
F	0.75		1.00	
F1			1.20	
G	4.95	-	5.20	
Н	10.00		10.40	
L1	21.00		23.00	
L2	13.20		14.10	
L3	10.55		10.85	
L4	2.70		3.20	
L5	0.85		1.25	
L6	7.30		7.50	

 Table 10.
 I²PAKFP (TO-281) mechanical data


Figure 26. I²PAKFP (TO-281) drawing



DIM	mm.		
DIM.	min.	typ	max.
А	4.40		4.60
A1	2.40		2.72
b	0.61		0.88
b1	1.14		1.70
с	0.49		0.70
c2	1.23		1.32
D	8.95		9.35
е	2.40		2.70
e1	4.95		5.15
E	10		10.40
L	13		14
L1	3.50		3.93
L2	1.27		1.40

Table 11. I²PAK (TO-262) mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20	6.20 6.	
J1	2.40 2		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

Table 12. TO-220 type A mechanical data

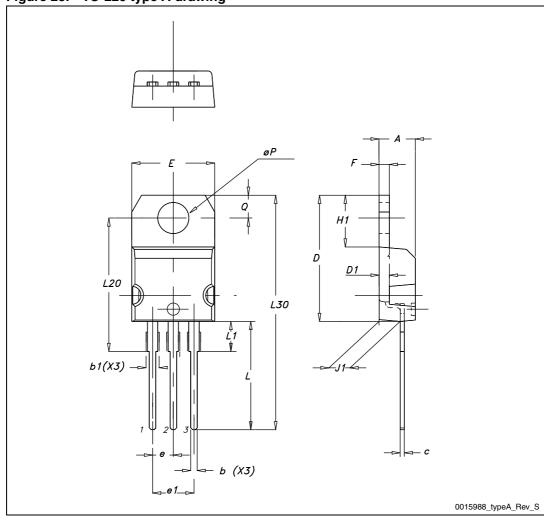
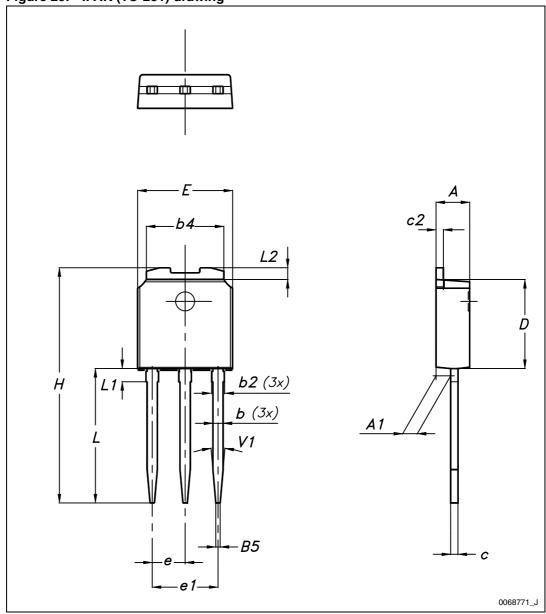


Figure 28. TO-220 type A drawing



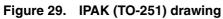

DIM		mm.	
DIM	min.	typ.	max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

Table 13. IPAK (TO-251) mechanical data

Revision history 5

Table 14.	Document	revision	history
-----------	----------	----------	---------

Date	Revision	Changes
19-May-2006	1	First release.
02-May-2011	2	R _G value has been updated.
06-Dec-2011	3	Removed p/n STD6N62K3 in DPAK.
03-Aug-2012	4	Added package, mechanical data: I ² PAKFP Updated <i>Table 1: Device summary, Table 2: Absolute maximum</i> <i>ratings, Table 3: Thermal data, Table 4: On /off states, Table 13: IPAK</i> (<i>TO-251</i>) <i>mechanical data</i> and <i>Figure 29: IPAK (TO-251) drawing</i> Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

