

TN1605H-6T

High temperature 16 A SCRs

Datasheet - production data

Features

- High junction temperature: T_i = 150 °C
- Gate triggering current I_{GT} = 6 mA
- High noise immunity dV/dt = 200 V/μs up to 150 °C
- Blocking voltage V_{DRM}/V_{RRM} = 600 V
- High turn-on current rise dl/dt: 100 A/µs
- ECOPACK®2 compliant component

Applications

- Motorbikes voltage regulator circuits
- Inrush current limiting circuits
- Motor control circuits and starters
- Light dimmers
- Solid state relays

Description

Designed with high immunity switching to external surges, the device offers robust switching up to its 150 °C maximum T_j.

The combination of noise immunity and low gate triggering current allows to design strong and compact control circuit.

Table 1: Device summary

Order code	Package	V_{DRM}/V_{RRM}	I _{GT}
TN1605H-6T	TO-220AB	600	6 mA

Characteristics TN1605H-6T

1 Characteristics

Table 2: Absolute maximum ratings (limiting values, T_j = 25 °C unless otherwise specified)

Symbol	Pa	Value	Unit		
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)		T _c = 133 °C	16	Α
			T _c = 133 °C	10	
IT _(AV)	Average on-state current (180° conduction angle)		T _c = 138 °C	8	Α
	(100 conduction angle)		T _c = 142 °C	6	
	Non repetitive surge peak	$t_p = 8.3 \text{ ms}$	T ::::::::: 0F 9C	153	А
Ітѕм	on-state current	t _p = 10 ms	T_j initial = 25 °C	140	
l²t	I ² t value for fusing	t _p = 10 ms		98	A ² s
dl/dt	Critical rate of rise of $I_G = 2 \times I_{GT}$, tr \leq 100 ns,		f = 60 Hz	100	A/µs
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage		T _j = 150 °C	600	V
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage $t_p = 10 \text{ ms}$			700	>
P _G (AV)	Average gate power dissipation $T_j = 15$		T _j = 150 °C	1	W
V_{RGM}	Maximum peak reverse gate v		5	V	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α
Рсм	Peak gate power dissipation	t _p = 20 μs	T _j = 150 °C	40	W
P _{G(AV)}	Average gate power dissipation $T_j = 150 \text{ °C}$			1	W
T _{stg}	Storage junction temperature range			-40 to +150	°C
Tj	Operating junction temperature range			-40 to +150	°C
TL	Maximum lead temperature for soldering during 10 s			260	°C

Table 3: Dynamic characteristics

Symbol	Parameter	Tj		Value	Unit
	V 40 V D 60 0		Min.	3.5	mA
lgт		25 °C	Тур.	4.5	
	$V_D = 12 \text{ V}, \text{ R}_L = 33 \Omega$	25 C	Max.	6	
V _G T			Max.	1.3	V
V_{GD}	$V_D = 600 \text{ V}, R_L = 3.3 \text{ k}\Omega$	150 °C	Min.	0.15	V
lι	I _G = 1.2 x I _{GT}	25 °C	Max.	40	Λ
lμ	I _T = 500 mA, gate open	25 C	Max.	20	mA
dV/dt	V _D = 402 V, gate open	150 °C	Min.	200	V/µs
t _{gt}	$I_{TM} = 32 \text{ A}, V_D = 402 \text{ V}, I_G = 12 \text{ mA}, \\ (dI_G/dt) \text{ max} = 0.2 \text{ A/}\mu\text{s}$ 25 °C Typ. 1		1.9	μs	
tq	$I_{TM} = 32 \text{ A}, V_D = 402 \text{ V}, (dl/dt)_{off} = 30 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}, dV_D/dt = 20 \text{ V/}\mu\text{s}$ 150 °C Typ. 70		70	μs	

TN1605H-6T Characteristics

Table 4: Static electrical characteristics

	Table II state stock to a state stock to a				
Symbol	Test Conditions T _j		Value	Unit	
V _{TM}	$I_{TM} = 32 \text{ A}, t_p = 380 \mu\text{s}$	25 °C	Max.	1.6	V
Vто	Threshold on-state voltage	150 °C	Max.	0.82	V
R _D	Dynamic resistance	150 °C	Max.	25	mΩ
		25 °C		5	μΑ
I _{DRM} /I _{RRM}	V _{DRM} = V _{RRM}	125 °C	Max.	1.5	mΑ
		150 °C		3.1	IIIA

Table 5: Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (DC)	1.1	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	C/VV

TN1605H-6T **Characteristics**

Characteristics (curves) 1.1

 α = 30 $^{\circ}$

25

50

10

8

6

Figure 1: Maximum average power dissipation versus average on-state current 18 16 $\alpha = 180$ DC α = 120 ° 14 α = 90 12

Figure 2: Average and DC on-state current versus case temperature $I_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ DC 18 16 14 12 $\alpha = 180^{\circ}$ 10 α = 120 8 6 $\alpha = 60$ α = 30 ° 4 2 T_C(°C) 0 0 100 125 150

 $I_{T(AV)}(A)$ 0 15 10

Figure 3: Average and DC on-state current versus ambient temperature $\mathsf{I}_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ 3.0 1.0 0.5 T_a(°C) 0.0 75

Figure 4: Relative variation of thermal impedance versus pulse duration $K = [Z_{th}/R_{th}]$ 1.0E+00 1.0E-01

Figure 5: Relative variation of gate trigger current and gate voltage versus junction temperature (typical values)

100

150

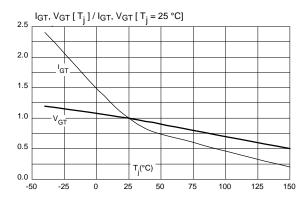
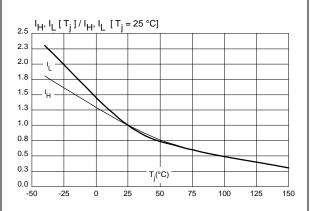



Figure 6: Relative variation of holding and latching current versus junction temperature (typical values)

DocID030160 Rev 1

4/9

TN1605H-6T Characteristics

Figure 7: Relative variation of static dV/dt immunity versus junction temperature (typical values)

adV/dt [Tj] / dV/dt [Tj= 150 °C]

Above test equipment capability

Ti (°C)

0 L 25

50

number of cycles

150

Non repetitive $T_j = 25$ °C

Number of cycles

100

Number of cycles

1 10 100 1000

Figure 8: Surge peak on-state current versus

Figure 9: Non repetitive surge peak on-state current versus sinusoidal pulse width (t_P < 10 ms).

100

125

150

75

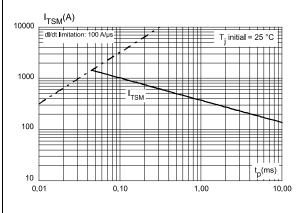


Figure 11: Relative variation of leakage current versus junction temperature ($t_P < 10ms$)

1.E+00 | DRM· | RRM | T_j | J | DRM· | RRM | T_j = 150 °C |

1.E-01 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-02 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-04 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-05 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-06 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-07 | DRM· | RRM | T_j | T_j = 150 °C |

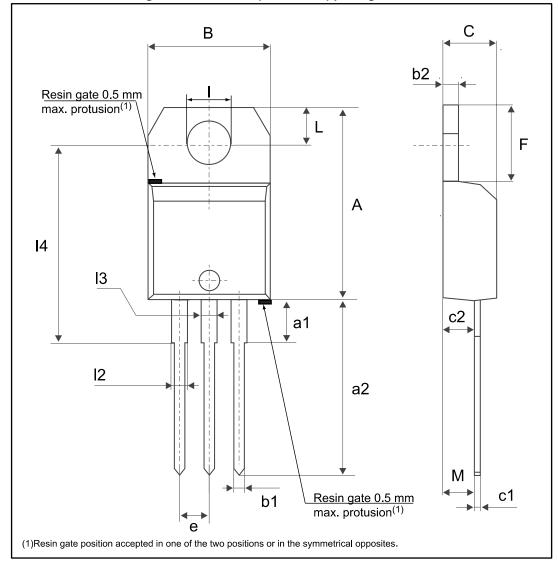
1.E-08 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-09 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-01 | DRM· | RRM | T_j | T_j = 150 °C |

1.E-02 | DRM· | RRM | T_j | T

Package information TN1605H-6T


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL 94,V0
- Lead-free package

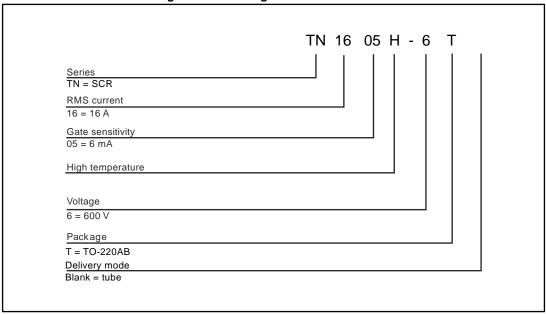
2.1 TO-220AB (NIns. and Ins.) package information

Figure 12: TO-220AB (NIns. & Ins.) package outline

TN1605H-6T Package information

Table 6: TO-220AB (NIns. & Ins.) package mechanical data

	Dimensions					
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	15.20		15.90	0.5984		0.6260
a1		3.75			0.1476	
a2	13.00		14.00	0.5118		0.5512
В	10.00		10.40	0.3937		0.4094
b1	0.61		0.88	0.0240		0.0346
b2	1.23		1.32	0.0484		0.0520
С	4.40		4.60	0.1732		0.1811
c1	0.49		0.70	0.0193		0.0276
c2	2.40		2.72	0.0945		0.1071
е	2.40		2.70	0.0945		0.1063
F	6.20		6.60	0.2441		0.2598
I	3.73		3.88	0.1469		0.1528
L	2.65		2.95	0.1043		0.1161
12	1.14		1.70	0.0449		0.0669
13	1.14		1.70	0.0449		0.0669
14	15.80	16.40	16.80	0.6220	0.6457	0.6614
М		2.6			0.1024	


Notes

⁽¹⁾Inch dimensions are for reference only.

Ordering information TN1605H-6T

3 Ordering information

Figure 13: Ordering information scheme

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TN1605H-6T	TN1605H6	TO-220AB	2.3 g	50	Tube

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
19-May-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

