
# NGB8202AN - 20 A, 400 V, N-Channel Ignition IGBT, D<sup>2</sup>PAK



20 Amps, 400 Volts V<sub>CE</sub> (on)  $\leq$  1.3 V @ I<sub>C</sub> = 10 A, V<sub>GE</sub>  $\geq$  4.5 V

## **Maximum Ratings** ( $T_1 = 25^{\circ}C$ unless otherwise noted)

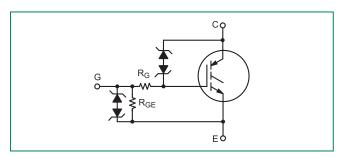
| Rating                                                             | Symbol                            | Value          | Unit                               |
|--------------------------------------------------------------------|-----------------------------------|----------------|------------------------------------|
| Collector-Emitter Voltage                                          | V <sub>ces</sub>                  | 440            | V                                  |
| Collector-Gate Voltage                                             | V <sub>cer</sub>                  | 440            | V                                  |
| Gate-Emitter Voltage                                               | V <sub>GE</sub>                   | ±15            | V                                  |
| Collector Current-Continuous<br>@ $T_c = 25^{\circ}C - Pulsed$     | I <sub>c</sub>                    | 20<br>50       | A <sub>DC</sub><br>A <sub>AC</sub> |
| Continuous Gate Current                                            | I <sub>G</sub>                    | 1.0            | mA                                 |
| Transient Gate Current<br>(t $\leq$ 2 ms, f $\leq$ 100 Hz)         | I <sub>G</sub>                    | 20             | mA                                 |
| ESD (Charged–Device Model)                                         | ESD                               | 2.0            | kV                                 |
| ESD (Human Body Model)<br>R = 1500 Ω, C = 100 pF                   | ESD                               | 8.0            | kV                                 |
| ESD (Machine Model)<br>R = 0 $\Omega$ , C = 200 pF                 | ESD                               | 500            | V                                  |
| Total Power Dissipation @ $T_c = 25^{\circ}C$<br>Derate above 25°C | P <sub>D</sub>                    | 150<br>1.0     | Watts<br>W/°C                      |
| Operating and Storage<br>Temperature Range                         | T <sub>J</sub> , T <sub>stg</sub> | –55 to<br>+175 | °C                                 |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

## Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over– Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Po


## Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- Gate-Emitter ESD Protection
- Temperature Compensated Gate–Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- These are Pb-Free Devices

# Applications

• Ignition Systems

# **Functional Diagram**



## Additional Information









## Unclamped Collector–To–Emitter Avalanche Characteristics (–55° $\leq$ T<sub>J</sub> $\leq$ 175°C)

|                                                                                                                                                               | Symbol             | Value | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|------|
| Single Pulse Collector-to-Emitter Avalanche Energy                                                                                                            |                    |       |      |
| $V_{cc}$ = 50 V, $V_{gE}$ = 5.0 V, $P_k I_L$ = 16.7 A, $R_g$ = 1000 $\Omega$ , L = 1.8 mH, Starting $T_J$ = 25°C                                              |                    | 250   |      |
| $V_{cc}$ = 50 V, $V_{gE}$ = 5.0 V, $P_{k} I_{L}$ = 14.9 A, $R_{g}$ = 1000 $\Omega$ , L = 1.8 mH, Starting $T_{J}$ = 150°C                                     | E <sub>AS</sub>    | 200   | mJ   |
| $V_{cc} = 50 \text{ V}, V_{ge} = 5.0 \text{ V}, P_k I_L = 14.1 \text{ A}, R_g = 1000 \Omega, L = 1.8 \text{ mH}, \text{ Starting } T_J = 175^{\circ}\text{C}$ |                    | 180   |      |
| Reverse Avalanche Energy                                                                                                                                      |                    |       |      |
| $V_{cc}$ = 100 V, $V_{gE}$ = 20 V, $P_{k} I_{L}$ = 25.8 A, L = 6.0 mH, Starting $T_{J}$ = 25°C                                                                | E <sub>AS(R)</sub> | 2000  | mJ   |

## Thermal Characteristics

|                                                                               | Symbol           | Value | Unit |
|-------------------------------------------------------------------------------|------------------|-------|------|
| Thermal Resistance, Junction to Case                                          | R <sub>θJC</sub> | 1.0   | °C/W |
| Thermal Resistance, Junction to Ambient (Note 1)                              | R <sub>θJA</sub> | 62.5  | °C/W |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds | TL               | 275   | °C   |

1. When surface mounted to an FR4 board using the minimum recommended pad size.



# **Electrical Characteristics - OFF**

| Characteristic                               | Symbol               | Test<br>Conditions                              | Temperature                        | Min                 | Тур                 | Max              | Unit                   |     |     |     |    |  |
|----------------------------------------------|----------------------|-------------------------------------------------|------------------------------------|---------------------|---------------------|------------------|------------------------|-----|-----|-----|----|--|
| Collector–Emitter                            | $D \setminus I$      | l <sub>c</sub> = 2.0 mA                         | T <sub>J</sub> = −40°C<br>to 175°C | 370                 | 395                 | 420              | V                      |     |     |     |    |  |
| Clamp Voltage                                | BV <sub>CES</sub>    | I <sub>c</sub> = 10 mA                          | T <sub>J</sub> = −40°C<br>to 175°C | 390                 | 415                 | 440              | V                      |     |     |     |    |  |
|                                              |                      | V <sub>GE</sub> = 0 V,<br>VCE = 15 V            | T <sub>J</sub> = 25°C              | -                   | 0.1                 | 1.0              |                        |     |     |     |    |  |
| Zero Gate Voltage                            | I <sub>ces</sub>     |                                                 | $T_{J} = 25^{\circ}C$              | 0.5                 | 1.5                 | 10               | μA                     |     |     |     |    |  |
| Collector Current                            | CES                  | V <sub>CE</sub> = 200V<br>V <sub>GE</sub> = 0 V | T <sub>J</sub> = 175°C             | 1.0                 | 25                  | 100*             |                        |     |     |     |    |  |
|                                              |                      | JL .                                            | $T_{J} = -40^{\circ}C$             | 0.4                 | 0.8                 | 5.0              |                        |     |     |     |    |  |
|                                              | B <sub>VCES(R)</sub> |                                                 | T_ = 25°C                          | 30                  | 35                  | 39               |                        |     |     |     |    |  |
| Reverse Collector–Emitter<br>Clamp Voltage   |                      | B <sub>VCES(R)</sub>                            | B <sub>VCES(R)</sub>               | $B_{VCES(R)}$       | $B_{VCES(R)}$       | IC = -75 mA      | T <sub>_</sub> = 175°C | 35  | 39  | 45* | V  |  |
|                                              |                      |                                                 |                                    |                     |                     |                  |                        |     |     |     |    |  |
|                                              |                      |                                                 | $T_{J} = 25^{\circ}C$              | 0.05                | 0.2                 | 1.0              |                        |     |     |     |    |  |
| Reverse Collector-Emitter<br>Leakage Current | I <sub>CES(R)</sub>  | I <sub>CES(R)</sub>                             | I <sub>CES(R)</sub>                | I <sub>CES(R)</sub> | I <sub>CES(R)</sub> | $V_{ce} = -24 V$ | T <sub>J</sub> = 175°C | 1.0 | 8.5 | 25  | mA |  |
|                                              |                      |                                                 | T_ = −40°C                         | 0.005               | 0.025               | 0.2              |                        |     |     |     |    |  |
| Gate-Emitter Clamp Voltage                   | BV <sub>GES</sub>    | l <sub>g</sub> = ±5.0 mA                        | T <sub>j</sub> = -40°C<br>to 175°C | 12                  | 12.5                | 14               | V                      |     |     |     |    |  |
| Gate-Emitter Leakage Current                 | I <sub>GES</sub>     | $V_{GE} = \pm 5.0 \text{ V}$                    | T <sub>j</sub> = -40°C<br>to 175°C | 200                 | 300                 | 350*             | μΑ                     |     |     |     |    |  |
| Gate Resistor                                | R <sub>g</sub>       | _                                               | T <sub>J</sub> = −40°C<br>to 175°C | -                   | 70                  | -                | Ω                      |     |     |     |    |  |
| Gate Emitter Resistor                        | R <sub>ge</sub>      | _                                               | T <sub>j</sub> = -40°C<br>to 175°C | 14.25               | 16                  | 25               | kΩ                     |     |     |     |    |  |

# Electrical Characteristics - ON (Note 3)

| Characteristic                                  | Symbol       | Test<br>Conditions       | Temperature            | Min | Тур | Max  | Unit  |
|-------------------------------------------------|--------------|--------------------------|------------------------|-----|-----|------|-------|
|                                                 |              |                          | T <sub>J</sub> = 25°C  | 1.5 | 1.8 | 2.1  |       |
| Gate Threshold Voltage                          | $V_{GE(th)}$ | l <sub>c</sub> = 1.0 mA, | T <sub>J</sub> = 175°C | 0.7 | 1.0 | 1.3  | V     |
|                                                 |              | $V_{GE} = V_{CE}$        | T_ = −40°C             | 1.7 | 2.0 | 2.3* |       |
| Threshold Temperature<br>Coefficient (Negative) | _            | _                        | _                      | 4.0 | 4.6 | 5.2  | mV/°C |

\*Maximum Value of Characteristic across Temperature Range.

3. Pulse Test: Pulse Width  $\leq$  300  $\mu S,$  Duty Cycle  $\leq$  2 %.



|  | Electrica | l Characteri | stics - ON | (Note 4) |
|--|-----------|--------------|------------|----------|
|--|-----------|--------------|------------|----------|

| Characteristic                     | Symbol               | Test<br>Conditions                                 | Temperature            | Min  | Тур  | Max  | Unit |
|------------------------------------|----------------------|----------------------------------------------------|------------------------|------|------|------|------|
|                                    |                      |                                                    | T <sub>J</sub> = 25°C  | 0.85 | 1.03 | 1.35 |      |
|                                    |                      | I <sub>c</sub> = 6.5 A,<br>V <sub>GE</sub> = 3.7 V | T <sub>J</sub> = 175°C | 0.7  | 0.9  | 1.15 |      |
|                                    |                      | V <sub>GE</sub> – 0.7 V                            | T <sub>J</sub> = -40°C | 0    | 1.11 | 1.4  |      |
|                                    |                      | I <sub>c</sub> = 9.0 A,                            | T <sub>J</sub> = 25°C  | 0.9  | 1.11 | 1.45 |      |
|                                    |                      | $V_{\rm GE} = 3.9 \rm V$                           | T <sub>J</sub> = 175°C | 0.8  | 1.01 | 1.25 |      |
|                                    |                      |                                                    | T_ = −40°C             | 1.0  | 1.18 | 1.5  |      |
|                                    |                      |                                                    | T <sub>J</sub> = 25°C  | 0.85 | 1.15 | 1.4  |      |
|                                    | V <sub>ce</sub> (on) | I <sub>C</sub> = 7.5 A,<br>V <sub>GE</sub> = 4.5 V | T <sub>J</sub> = 175°C | 0.7  | 0.95 | 1.2  | - V  |
| Collector-to-Emitter<br>On-Voltage |                      |                                                    | T_= -40°C              | 1.0  | 1.3  | 1.6* |      |
|                                    |                      | I <sub>c</sub> = 10 A,<br>V <sub>GE</sub> = 4.5 V  | T <sub>J</sub> = 25°C  | 1.0  | 1.3  | 1.6  |      |
|                                    |                      |                                                    | T <sub>J</sub> = 175°C | 0.8  | 1.05 | 1.4  |      |
|                                    |                      |                                                    | T <sub>J</sub> = −40°C | 1.1  | 1.4  | 1.7* | -    |
|                                    |                      | I <sub>c</sub> = 15 A,<br>V <sub>GF</sub> = 4.5 V  | T <sub>J</sub> = 25°C  | 1.15 | 1.45 | 1.7  |      |
|                                    |                      |                                                    | T <sub>J</sub> = 175°C | 1.0  | 1.3  | 1.55 |      |
|                                    |                      | V <sub>GE</sub> - 4.0 V                            | T <sub>J</sub> = -40°C | 1.25 | 1.55 | 1.8* |      |
|                                    |                      |                                                    | T_ = 25°C              | 1.1  | 1.4  | 1.9  |      |
|                                    |                      | I <sub>c</sub> = 20 A,<br>V <sub>GE</sub> = 4.5 V  | T <sub>J</sub> = 175°C | 1.2  | 1.5  | 1.8  |      |
|                                    |                      | V <sub>GE</sub> = 4.5 V                            | T_= −40°C              | 1.3  | 1.42 | 2.0  |      |
| Forward Transconductance           | gfs                  | V <sub>ce</sub> = 5.0 V,<br>I <sub>c</sub> = 6.0 A | T <sub>J</sub> = 25°C  | 10   | 18   | 25   | Mhos |

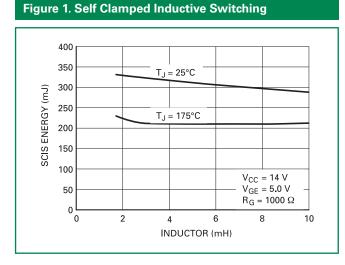


## **Dynamic Characteristics**

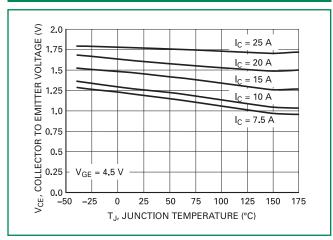
| Characteristic       | Symbol           | Test<br>Conditions                   | Temperature           | Min  | Тур  | Max  | Unit |
|----------------------|------------------|--------------------------------------|-----------------------|------|------|------|------|
| Input Capacitance    | C <sub>ISS</sub> |                                      |                       | 1100 | 1300 | 1500 |      |
| Output Capacitance   | C <sub>oss</sub> | V <sub>cE</sub> = 25 V<br>f = 10 kHZ | T <sub>J</sub> = 25°C | 70   | 80   | 90   | pF   |
| Transfer Capacitance | C <sub>RSS</sub> |                                      |                       |      | 18   | 20   | 22   |

## **Switching Characteristics**

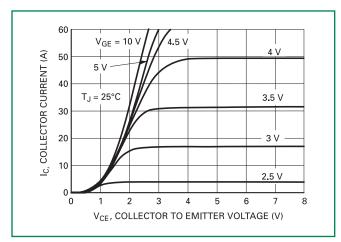
| Characteristic      | Symbol                                                                   | Test Conditions                                                                      | Temperature            | Min | Тур  | Max | Unit |
|---------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------|-----|------|-----|------|
| Turn-Off Delay Time | +                                                                        | N 000N                                                                               | T <sub>J</sub> = 25°C  | 6.0 | 8.0  | 10  |      |
| (Resistive)         | t <sub>d (off)</sub>                                                     | $V_{cc} = 300 \text{ V},$ $I_{c} = 9 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega,$       | T <sub>J</sub> = 175°C | 6.0 | 8.0  | 10  |      |
| Fall Time           | +                                                                        | $R_{g} = 1.0 \text{ K}\Omega$ ,<br>$R_{L} = 33 \Omega$ ,<br>$V_{gF} = 5.0 \text{ V}$ | T <sub>J</sub> = 25°C  | 4.0 | 6.0  | 8.0 |      |
| (Resistive)         | t <sub>f</sub>                                                           | GE - 0.0 V                                                                           | T <sub>J</sub> = 175°C | 8.0 | 10.5 | 14  |      |
| Turn-Off Delay Time | +                                                                        |                                                                                      | $T_{J} = 25^{\circ}C$  | 3.0 | 5.0  | 7.0 |      |
| (Inductive)         | t <sub>d (off)</sub>                                                     | $V_{cc} = 300 \text{ V},$ $I_{c} = 9 \text{ A}$                                      | T <sub>J</sub> = 175°C | 5.0 | 7.0  | 9.0 | µSec |
| Fall Time           | +                                                                        | $R_{g} = 1.0 \text{ k}\Omega,$<br>$L = 300 \mu\text{H},$<br>$V_{gE} = 5.0 \text{ V}$ | T <sub>J</sub> = 25°C  | 1.5 | 3.0  | 4.5 | μσες |
| (Inductive)         | t <sub>f</sub>                                                           |                                                                                      | T <sub>J</sub> = 175°C | 5.0 | 7.0  | 10  |      |
| Turn-On Delay Time  | +                                                                        |                                                                                      | T <sub>J</sub> = 25°C  | 1.0 | 1.5  | 2.0 |      |
| Turn-On Delay Time  | t <sub>d (on)</sub>                                                      | $V_{cc} = 14 \text{ V},$<br>$I_{c} = 9.0 \text{ A}$                                  | T <sub>J</sub> = 175°C | 1.0 | 1.5  | 2.0 |      |
| Diag Time           | $R_{g} = 1.0 \text{ k}\Omega,$ $R_{L} = 1.5 \Omega,$ $V_{L} = 5.0 V_{L}$ | T <sub>J</sub> = 25°C                                                                | 4.0                    | 6.0 | 8.0  |     |      |
| Rise Time           | t <sub>r</sub>                                                           | V <sub>GE</sub> = 5.0 V -                                                            | T <sub>J</sub> = 175°C | 3.0 | 5.0  | 7.0 |      |


4. Pulse Test: Pulse Width  $\leq$  300  $\mu S,$  Duty Cycle  $\leq$  2%.

\*Maximum Value of Characteristic across Temperature Range.


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

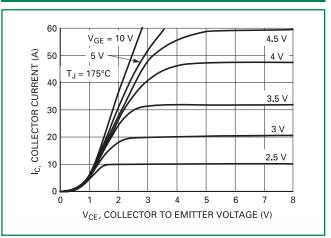



#### **Ratings and Characteristic Curves**



## Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature




#### Figure 5. Collector Current vs. Collector-to-Emitter Voltage



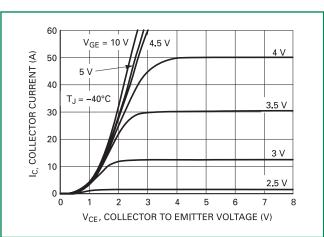
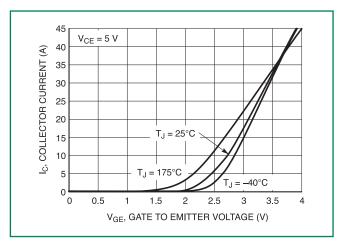

30  $V_{CC} = 14 V$  $V_{GE} = 5.0 V$  $R_{G} = 1000 \Omega$ È 25 IA, AVALANCHE CURRENT L = 1.8 mH20 L = 3.0 mH 15 10 L = 10 mH 5 0 -25 0 150 175 -50 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C)

Figure 2. Open Secondary Avalanche Current vs. Temperature

#### Figure 4. Collector Current vs. Collector-to-Emitter Voltage




#### Figure 6. Collector Current vs. Collector-to-Emitter Voltage

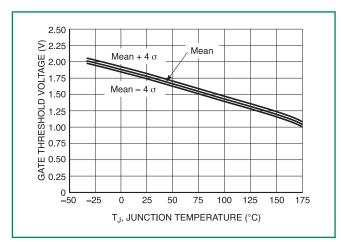
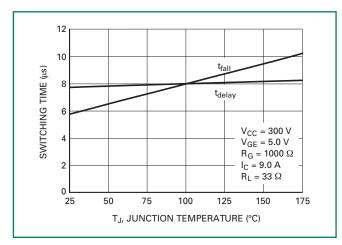
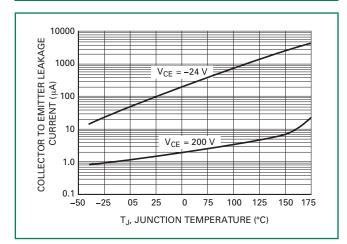


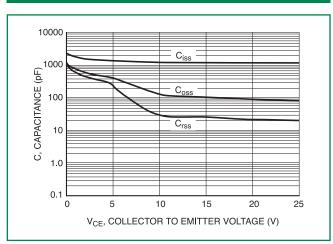


## **Figure 7. Transfer Characteristics**

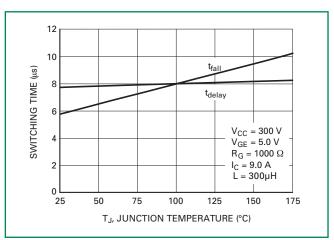


#### Figure 9. Gate Threshold Voltage vs. Temperature



Figure 11. Resistive Switching Fall Time vs. Temperature

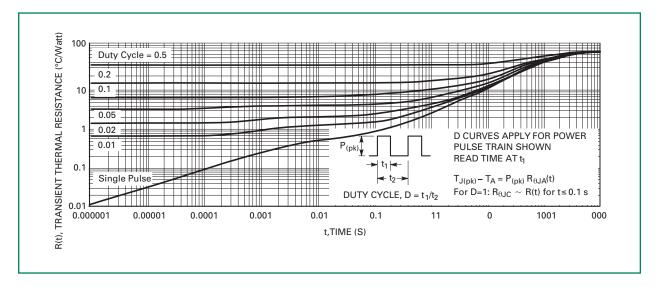



#### Figure 8. Collector-to-Emitter Leakage Current vs. Temperature

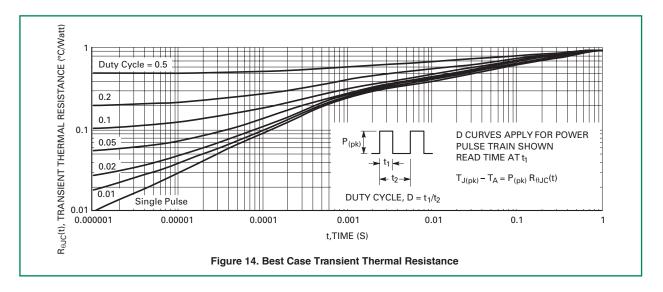


#### Figure 10. Capacitance vs. Collector-to-Emitter Voltage



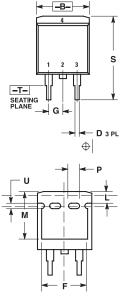

#### Figure 12. Inductive Switching Fall Time vs. Temperature

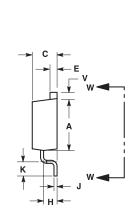



© 2018 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 02/15/18

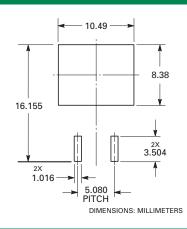




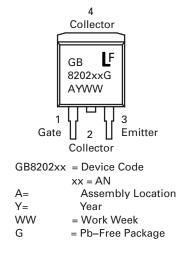




## Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)






## Dimensions






## Soldering Footrpint



## Part Marking System



## ORDERING INFORMATION

| Device        | Package            | Shipping             |
|---------------|--------------------|----------------------|
| NGB8202ANT4G  | D2PAK<br>(Pb-Free) | 800 /<br>Tape & Reel |
| NGB8202ANTF4G |                    | 700 /<br>Tape & Reel |

**Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefluse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <a href="https://www.littlefluse.com/disclaimer-electronics">www.littlefluse.com/disclaimer-electronics</a>.

VIEW W–W

| Dim | Inches    |       | Millimeters |       |  |
|-----|-----------|-------|-------------|-------|--|
| Dim | Min       | Max   | Min         | Max   |  |
| А   | 0.340     | 0.380 | 8.64        | 9.65  |  |
| В   | 0.380     | 0.405 | 9.65        | 10.29 |  |
| С   | 0.160     | 0.190 | 4.06        | 4.83  |  |
| D   | 0.020     | 0.035 | 0.51        | 0.89  |  |
| E   | 0.045     | 0.055 | 1.14        | 1.40  |  |
| F   | 0.310     | 0.350 | 7.87        | 8.89  |  |
| G   | 0.100 BSC |       | 2.54 BSC    |       |  |
| Н   | 0.080     | 0.110 | 2.03        | 2.79  |  |
| J   | 0.018     | 0.025 | 0.46        | 0.64  |  |
| К   | 0.090     | 0.110 | 2.29        | 2.79  |  |
| L   | 0.052     | 0.072 | 1.32        | 1.83  |  |
| М   | 0.280     | 0.320 | 7.11        | 8.13  |  |
| Ν   | 0.197 REF |       | 5.00 REF    |       |  |
| Р   | 0.079 REF |       | 2.00 REF    |       |  |
| R   | 0.039 REF |       | 0.99 REF    |       |  |
| S   | 0.575     | 0.625 | 14.60       | 15.88 |  |
| V   | 0.045     | 0.055 | 1.14        | 1.40  |  |

(M) T | B (M)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.