

Automotive-grade N-channel 30 V, 4 mΩ typ., 80 A STripFET™ H6 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

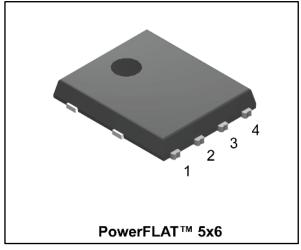
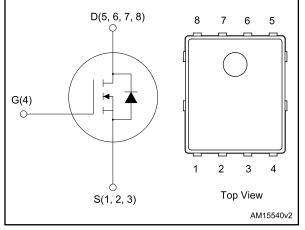



Figure 1: Internal schematic diagram

Features

Order code	VDS	RDS(on) max.	ID
STL86N3LLH6AG	30 V	5.2 mΩ	80 A

- AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Logic level
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFETTM H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STL86N3LLH6AG	86N3LLH6	PowerFLAT [™] 5x6	Tape and reel

DocID026950 Rev 4

www.st.com

This is information on a product in full production.

Contents

Contents

1	Electrical ratings3					
2	Electric	al characteristics	4			
	2.2	Electrical characteristics (curves)	6			
3	Test cir	cuits	8			
4	Packag	e information	9			
	4.1	PowerFLAT™5x6 WF type R package information	9			
	4.2	PowerFLAT™ 5x6 WF packing information	12			
5	Revisio	n history	14			

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V_{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at Tc = 25 °C	80	А
ID ⁽¹⁾	Drain current (continuous) at T _C = 70 °C	60	
ID ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	51	А
I _{DM} ⁽¹⁾ , ⁽²⁾	Drain current (pulsed)	320	А
ID ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	21	А
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 70 °C 15.7		А
ID ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	13.1	А
Idm ⁽²⁾ , ⁽³⁾	Drain current (pulsed)	84	А
Ртот ⁽¹⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$	60	w
P _{TOT} ⁽³⁾	Total dissipation at T_{pcb} = 25 °C	4	
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

 $^{(1)}\mbox{The}$ value is rated according to $R_{\mbox{thj-c}}.$

 $^{(2)}\mbox{Pulse}$ width limited by safe operating area.

 $^{(3)}\mbox{The}$ value is rated according to $R_{\mbox{thj-pcb}}.$

Table 3: Thermal data

Symbol	Parameter Value		Unit	
R _{thj} -case	Thermal resistance junction-case	2.08		
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W	

Notes:

 $^{(1)}\!When$ mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s

2 Electrical characteristics

(Tc = 25 °C unless otherwise specified)

Table 4: On/off-states						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0, I_D = 1 \text{ mA}$	30			V
1	Zero gate voltage	$V_{GS} = 0, V_{DS} = 30 V$			1	
l _{DSS} d	drain current	V _{GS} = 0, V _{DS} = 30 V, T _C = 125 °C			10	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.7	2.5	V
R _{DS(on)}	Static drain-source on-	$V_{GS} = 10 \text{ V}, I_D = 10.5 \text{ A}$		4	5.2	mΩ
	resistance	$V_{GS} = 4.5 \text{ V}, I_D = 10.5 \text{ A}$		6.7	7.6	mΩ

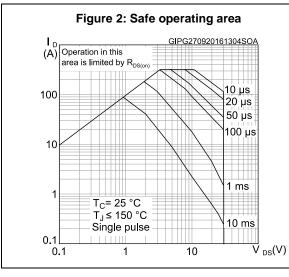
Table 5: Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1350	1690	2030	pF
Coss	Output capacitance	$V_{DS} = 25 V, f = 1 MHz,$	230	290	350	pF
Crss	Reverse transfer capacitance	V _{GS} = 0	140	176	210	pF
Qg	Total gate charge	$V_{DD} = 15 V, I_D = 21 A,$	-	17	-	nC
Qgs	Gate-source charge	$V_{GS} = 4.5 V$	-	8	-	nC
Q_gd	Gate-drain charge	(see Figure 14: "Test circuit for gate charge bahavior")	-	6	-	nC
Rg	Gate input resistance	f = 1 MHz, Gate DC Bias = 0, Test signal level = 20 mV open drain, ID = 0	1.25	1.7	1.2	Ω

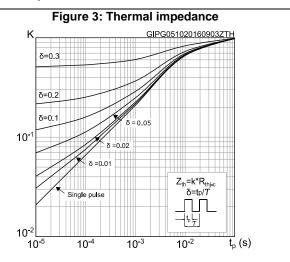
Table 6: Switching times

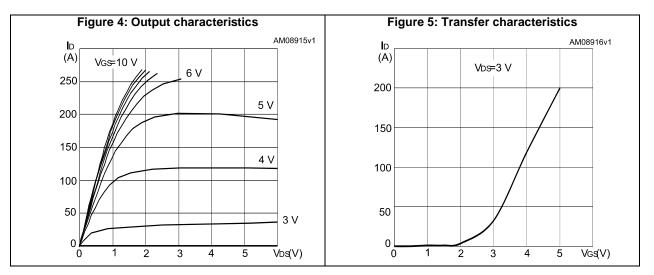
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 15 \text{ V}, I_D = 10.5 \text{ A},$	I	9.5	-	ns
tr	Rise time	R_{G} = 4.7 Ω , V_{GS} = 10 V	-	30	-	ns
t _{d(off)}	Turn-off delay time	See Figure 13: "Test circuit for resistive load switching times"	-	37	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform"	-	12	-	ns

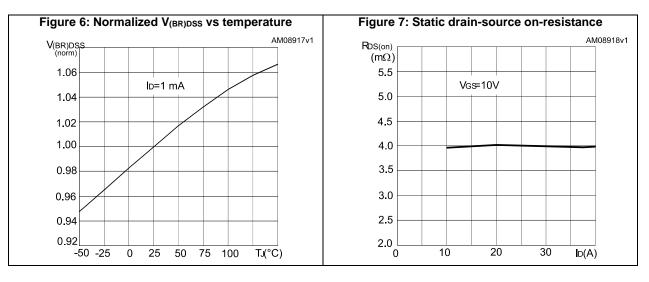
Electrical characteristics

Table 7: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		21	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		84	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 21 A, V _{GS} = 0	-		1.1	V
trr	Reverse recovery time	I _{SD} = 10.5 A, di/dt = 100 A/µs	-	24		ns
Qrr	Reverse recovery charge	V _{DD} = 25 V See Figure 15: "Test circuit for inductive load switching and diode	-	16.8		nC
Irrm	Reverse recovery current	recovery times"	-	1.4		А

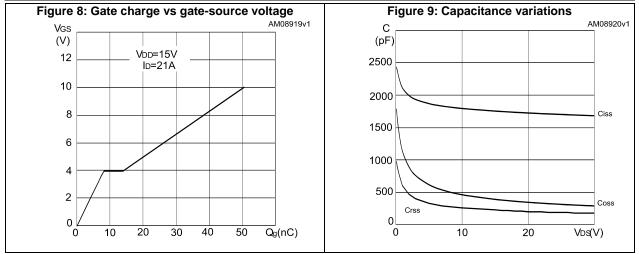

Notes:

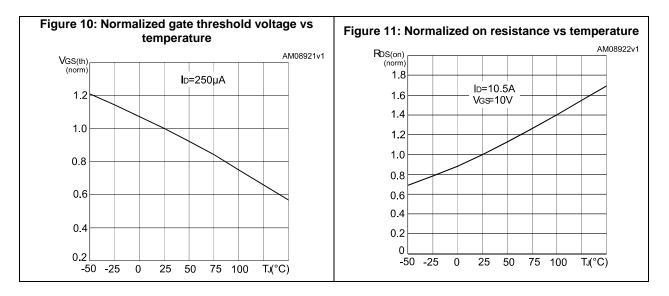

⁽¹⁾Pulse width limited by safe operating area.

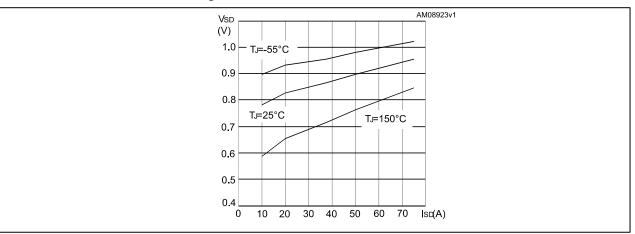

 $^{(2)}$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle 1.5%.



2.2 Electrical characteristics (curves)

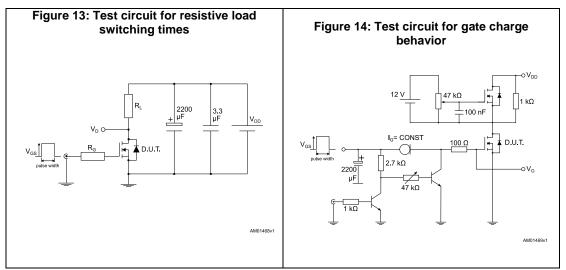


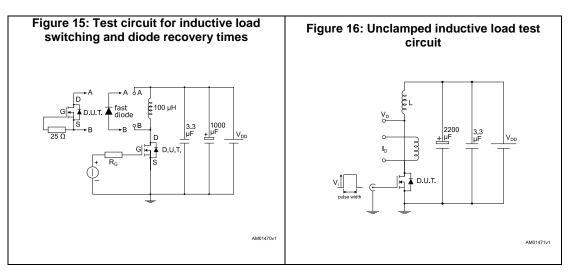

DocID026950 Rev 4

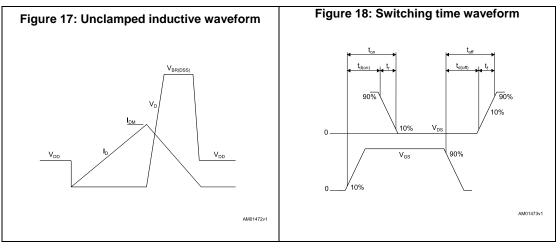

6/15

Electrical characteristics

Figure 12: Source-drain diode forward characteristics




57


DocID026950 Rev 4

57

3 Test circuits

8/15 DocID026950 Rev 4

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™]5x6 WF type R package information

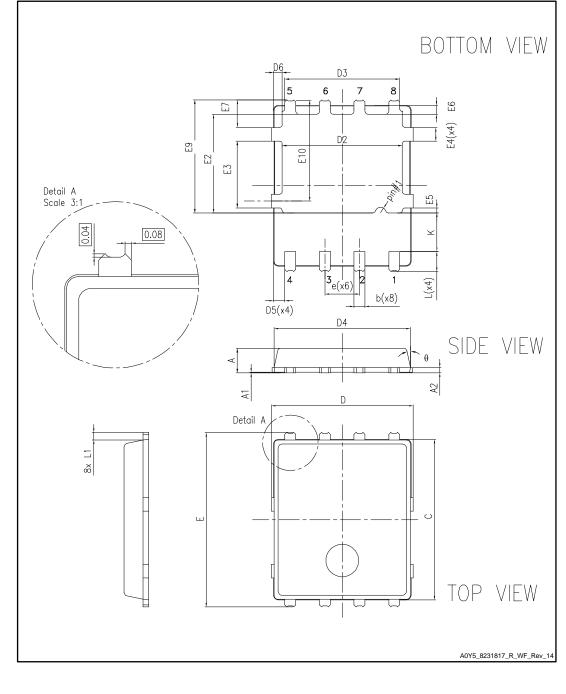
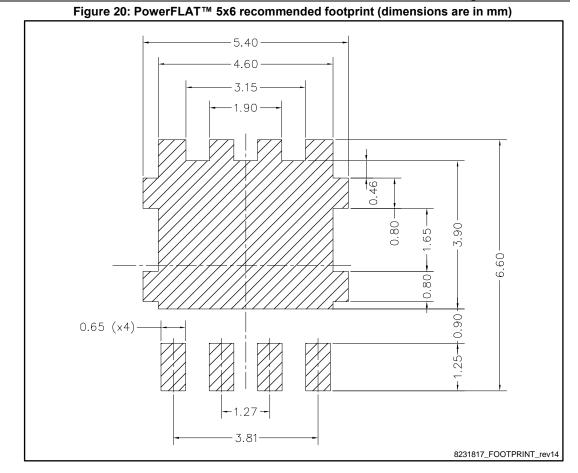
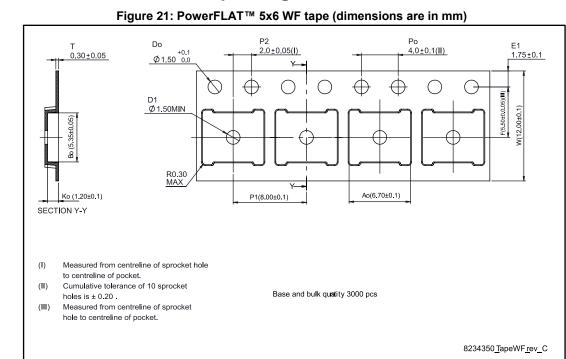


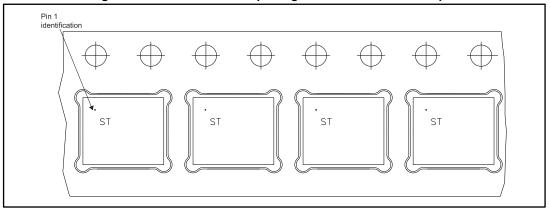
Figure 19: PowerFLAT™ 5x6 WF type R package outline


Package information

STL86N3LLH6AG


formation STL86N3LLH6A					
Table 8: PowerFLAT™ 5x6 WF type R mechanical data					
Dim.		mm			
Dini.	Min.	Тур.	Max.		
A	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
С	5.80	6.00	6.10		
D	5.00	5.20	5.40		
D2	4.15		4.45		
D3	4.05	4.20	4.35		
D4	4.80	5.00	5.10		
D5	0.25	0.4	0.55		
D6	0.15	0.3	0.45		
е		1.27			
E	6.20	6.40	6.60		
E2	3.50		3.70		
E3	2.35		2.55		
E4	0.40		0.60		
E5	0.08		0.28		
E6	0.20	0.325	0.45		
E7	0.85	1.00	1.15		
E9	4.00	4.20	4.40		
E10	3.55	3.70	3.85		
К	1.275		1.575		
L	0.725	0.825	0.925		
L1	0.175	0.275	0.375		
θ	0°		12°		

Package information



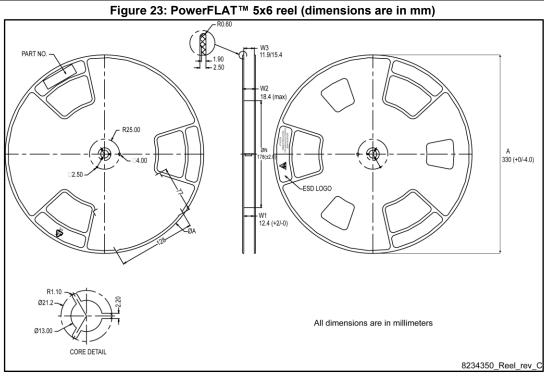

4.2 PowerFLAT[™] 5x6 WF packing information

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
26-Sep-2014	1	First release.
21-Jan-2015	2	Document status promoted from preliminary to production data. Updated Section 4: Package mechanical data.
03-Feb-2015	3	Updated title and features in cover page.
03-Oct-2016	4	Updated title and features in cover page. Updated <i>Table 2:</i> "Absolute maximum ratings" and <i>Table 4:</i> "On/off- states". Changed Figure 2: "Safe operating area" and Figure 3: "Thermal impedance".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

