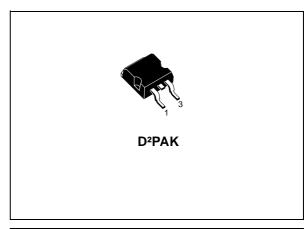
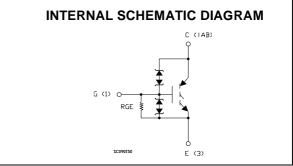


STGB20NB41LZ


N-CHANNEL CLAMPED 20A - D²PAK INTERNALLY CLAMPED PowerMESH™ IGBT


TYPE	V _{CES}	V _{CE(sat)}	Ic
STGB20NB41LZ	CLAMPED	< 2.0 V	20 A

- POLYSILICON GATE VOLTAGE DRIVEN
- LOW THRESHOLD VOLTAGE
- LOW ON-VOLTAGE DROP
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- HIGH VOLTAGE CLAMPING FEATURE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The built in collector-gate zener exhibits a very precise active clamping while the gate-emitter zener supplies an ESD protection.

APPLICATIONS

AUTOMOTIVE IGNITION

ORDER CODE

PART NUMBER	PART NUMBER MARKING		PACKAGING	
STGB20NB41LZT4	GB20NB41LZ	D ² PAK	TAPE & REEL	

April 2004 1/9

STGB20NB41LZ

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	CLAMPED	V
V _{ECR}	Emitter-Collector Voltage	20	V
V _{GE}	Gate-Emitter Voltage	CLAMPED	V
Ic	Collector Current (continuous) at T _C = 25°C	40	Α
Ic	Collector Current (continuous) at T _C = 100°C	20	Α
I _{CM} (■)	Collector Current (pulsed)	80	А
Eas	Single Pulse Energy Tc = 25°C	700	mJ
P _{TOT}	Total Dissipation at T _C = 25°C	200	W
	Derating Factor	1.33	W/°C
E _{SD}	ESD (Human Body Model)	8	KV
T _{stg}	Storage Temperature	- 55 to 175	°C
Tj	Operating Junction Temperature	- 55 to 175	

^(•) Pulse width limited by safe operating area

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.75	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _(CES)	Clamped Voltage	I _C = 2 mA, V _{GE} = 0, Tc= - 40°C ÷ 150°C	382	412	442	V
BV _(ECR)	Emitter Collector Break-down Voltage	I _C = 75 mA, Tc= 25°C	20	28		V
BV _{GE}	Gate Emitter Break-down Voltage	I _G = ± 2 mA	12	14	16	٧
ICES	Collector cut-off Current	V _{CE} = 15 V, V _{GE} = 0 ,T _C = 150 °C			10	μΑ
	$(V_{GE} = 0)$	V _{CE} =200 V, V _{GE} = 0 ,T _C = 150°C			100	μΑ
IGES	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 10V , V _{CE} = 0	± 300	± 660	± 1000	μA
R _{GE}	Gate Emitter Resistance		10	15	30	KΩ

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	V _{CE} = V _{GE} , I _C = 250μA, Tc=25°C	1		2.4	V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	V _{GE} = 4.5V, I _C = 10 A, T _C = 25°C V _{GE} = 4.5V, I _C = 20 A, T _C = 25°C		1.1 1.3	1.8 2.0	V V

DYNAMIC

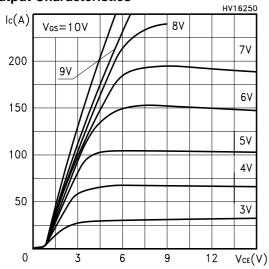
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 25 V , I _C =20 A		35		S
C _{ies}	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		2300		pF
Coes	Output Capacitance			160		pF
C _{res}	Reverse Transfer Capacitance			25		pF
Qg	Gate Charge	V _{CE} = 320V, I _C = 20 A, V _{GE} = 5V		46		nC

FUNCTIONAL CHARACTERISTICS

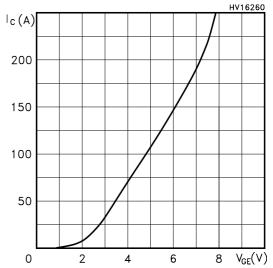
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
II	Latching Current	V_{Clamp} = 320 V, T_{C} = 125 °C R _{GOFF} = 1K Ω , V_{GE} = 10 V		40		Α
U.I.S.	Functional Test Open Secondary Coil	R_{GOFF} =1K Ω , L = 1.6mH, Tc=125°C	20			Α

SWITCHING ON

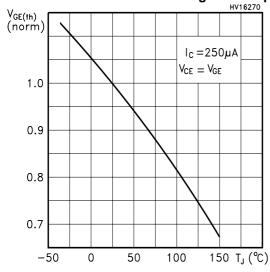
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Rise Time	$V_{CC} = 320 \text{ V, } I_{C} = 20 \text{ A}$ $R_{G} = 1K\Omega$, $V_{GE} = 5 \text{ V}$		1 0.22		µs µs
(di/dt) _{on}	Turn-on Current Slope	V_{CC} = 320 V, I_C = 20 A R_G =1 $K\Omega$, V_{GE} = 5 V		140		A/µs
Eon	Turn-on Switching Losses	V _{CC} = 320 V, I _C = 20 A, Tc=25°C		5		mJ
		$R_G=1K\Omega$, $V_{GE}=5$ V, $T_{C}=150$ °C		5.1		mJ

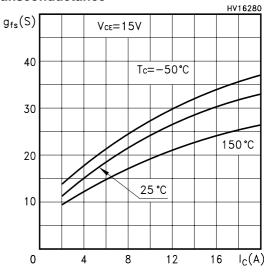

SWITCHING OFF

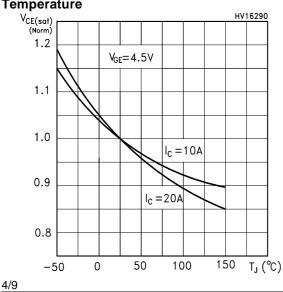
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	$V_{cc} = 320 \text{ V}, I_{C} = 20 \text{ A},$		4.4		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 1K \Omega$, $V_{GE} = 5 V$		2.5		μs
$t_{d(off)}$	Delay Time			12.1		μs
t _f	Fall Time			1.6		μs
E _{off} (**)	Turn-off Switching Loss			12.9		mJ
t _c	Cross-over Time	$V_{cc} = 320 \text{ V}, I_{C} = 20 \text{ A},$		6		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 1 \text{ K}\Omega$, $V_{GE} = 5 \text{ V}$ Ti = 125 °C		3.16		μs
$t_{d(off)}$	Delay Time	1, 120 0		13.4		μs
t _f	Fall Time			2.7		μs
E _{off} (**)	Turn-off Switching Loss			18.4		mJ

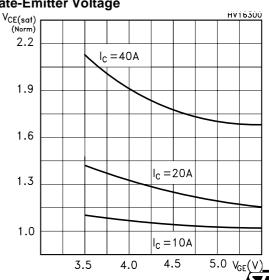

⁽¹⁾Pulse width limited by max. junction temperature. (**)Losses Include Also the Tail

A7/₀

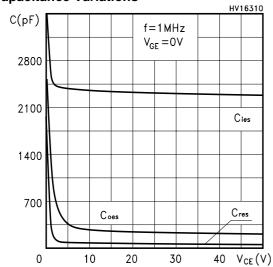

Output Characteristics


Transfer Characteristics

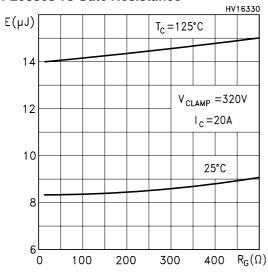

Normalized Gate Threshold Voltage vs Temp.


Transconductance

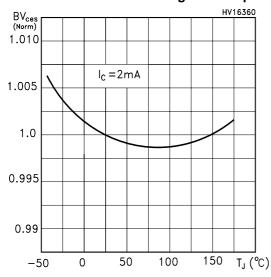
Normalized Collector-Emitter On Voltage vs Temperature

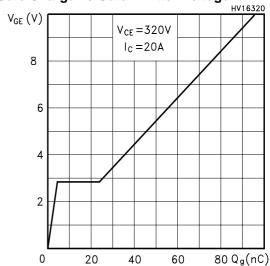


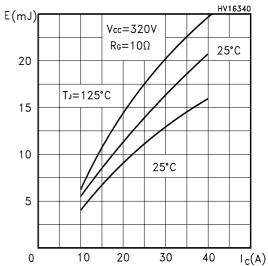
Normalized Collector-Emitter On Voltage vs Gate-Emitter Voltage

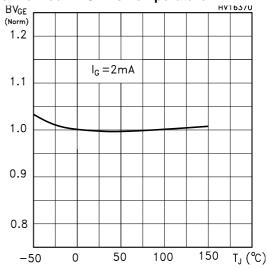


Downloaded from Arrow.com.

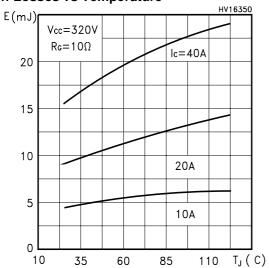

Capacitance Variations


Off Losses vs Gate Resistance

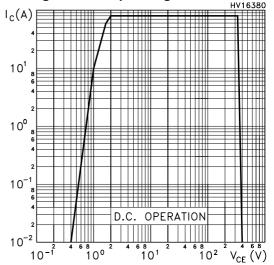

Normalized Break-down Voltage vs Temp.


Gate Charge vs Gate-Emitter Voltage

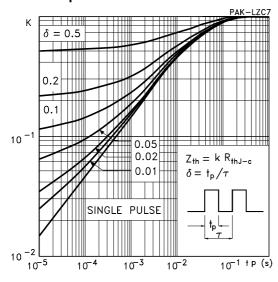
Off Losses vs Collector Current



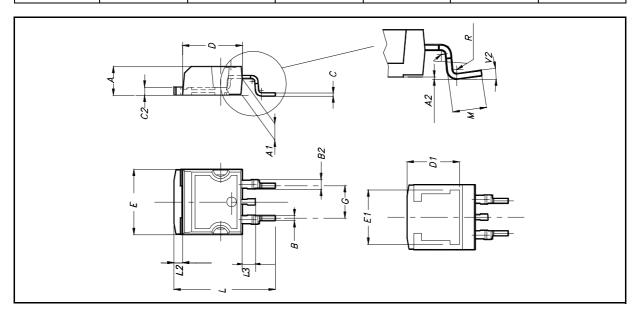
Normalized BVGE vs Temperature



47/₃

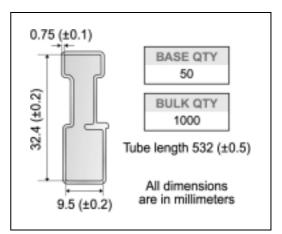

Off Losses vs Temperature

Switching Off Safe Operating Area

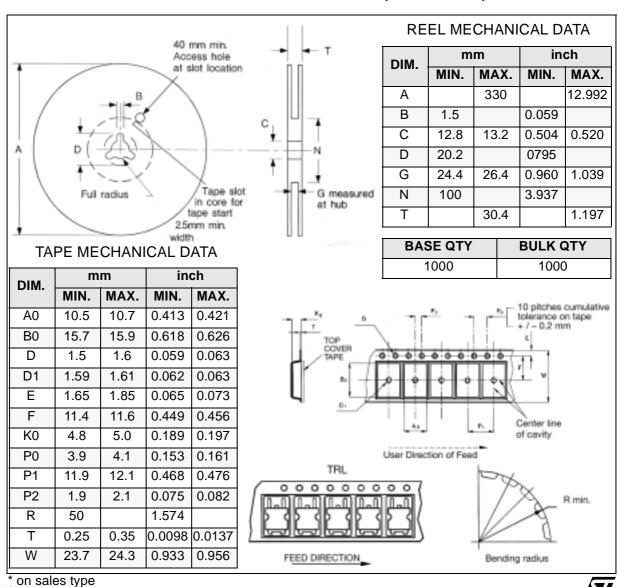


Thermal Impedance

D²PAK MECHANICAL DATA


DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	00		80			

D²PAK FOOTPRINT



TUBE SHIPMENT (no suffix)*

47/

TAPE AND REEL SHIPMENT (suffix "T4")*

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patents or other rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com