

STD150N3LLH6 STP150N3LLH6, STU150N3LLH6

N-channel 30 V, 0.0024 Ω , 80 A, DPAK, IPAK, TO-220 STripFET™ VI DeepGATE™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STD150N3LLH6	30 V	0.0028Ω	80 A
STP150N3LLH6	30 V	0.0033Ω	80 A
STu150N3LLH6	30 V	$0.0033~\Omega$	80 A

- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- High avalanche ruggedness
- Low gate drive power losses

Application

■ Switching applications

Description

This product utilizes the 6th generation of design rules of ST's proprietary STripFETTM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

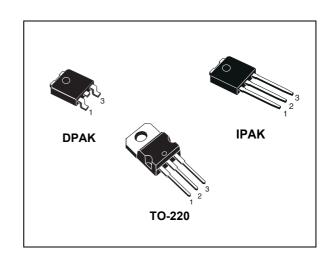


Figure 1. Internal schematic diagram

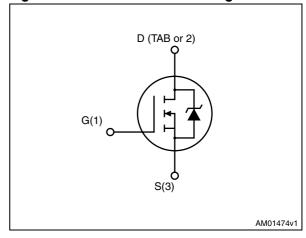


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD150N3LLH6	150N3LLH6	DPAK	Tape and reel
STP150N3LLH6	150N3LLH6	TO-220	Tube
STU150N3LLH6	150N3LLH6	IPAK	Tube

September 2009 Doc ID 15227 Rev 3 1/16

Contents

1	Electrical ratings	3
2	Electrical characteristics	
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	
5	Packaging mechanical data	14
6	Pavision history	15

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D	Drain current (continuous) at T _C = 100 °C	80	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	А
P _{TOT}	Total dissipation at T _C = 25 °C	110	W
	Derating factor	0.73	W/°C
E _{AS} (3)	Single pulse avalanche energy	525	mJ
T _{stg}	Storage temperature	-55 to 175	°C
T _j	Max. operating junction temperature	175	°C

^{1.} Limited by wire bonding

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.36	°C/W
R _{thj-amb}	Thermal resistance junction-case max	100	°C/W
T _j	Maximum lead temperature for soldering purpose	275	°C

^{2.} Pulse width limited by safe operating area

^{3.} Starting Tj = 25°C, I_D = 40 A, V_{DD} = 25 V

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 30 V V _{DS} = 30 V,Tc = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	٧
		$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$ SMD version		0.0024	0.0028	Ω
Book	Static drain-source on	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$		0.0029	0.0033	Ω
R _{DS(on)} resistand	resistance	$V_{GS} = 4.5 \text{ V}, I_D = 40 \text{ A}$ SMD version		0.0034	0.0045	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 40 \text{ A}$		0.0039	0.0049	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f=1 MHz,}$ $V_{GS} = 0$	-	4040 740 425	-	pF pF pF
$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 15 V, I_D = 80 A V_{GS} = 4.5 V (see Figure 14)	-	40 16.3 15.8	-	nC nC nC
R_{G}	Gate input resistance	f = 1 MHz gate bias Bias = 0 test signal level = 20 mV open drain	-	1.4	-	Ω

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	V_{DD} = 15 V, I_D = 40 A, R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 15)	-	17 18	-	ns ns
t _{d(off)}	Turn-off delay time Fall time	$V_{DD} = 15 \text{ V}, I_{D} = 40 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 15)	-	75 46	-	ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		80 320	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.1	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 80 A, di/dt = 100 A/ μ s, V_{DD} = 24 V (see Figure 17)	-	34 35 2.1		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

AM03997v1

(A)

100

Operation in the age of the policy of

Figure 3. Thermal impedance

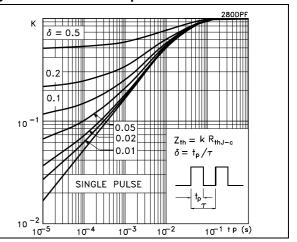


Figure 4. Output characteristics

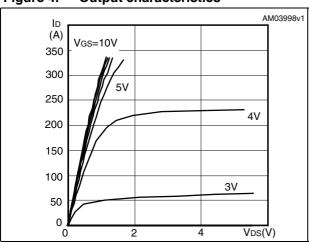


Figure 5. Transfer characteristics

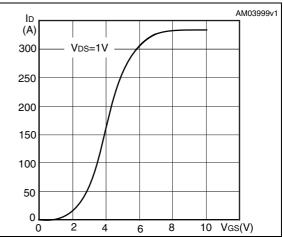


Figure 6. Normalized BV_{DSS} vs temperature

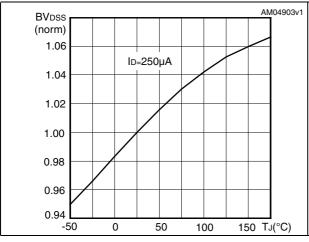
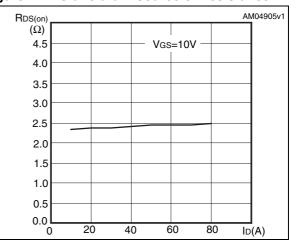



Figure 7. Static drain-source on resistance

AM04000v1 AM00893v1 Vgs (pF) (V) VDD=15V f=1MHz 12 ID=80A 6100 10 4600 8 Ciss 6 3100 4 1600 Coss 2 100 L 20 20 40 60 80 100 Qg(nC) 10 15 V_{DS}(V) 0

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

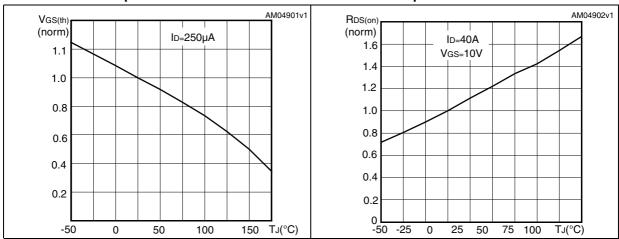



Figure 12. Source-drain diode forward characteristics

477

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

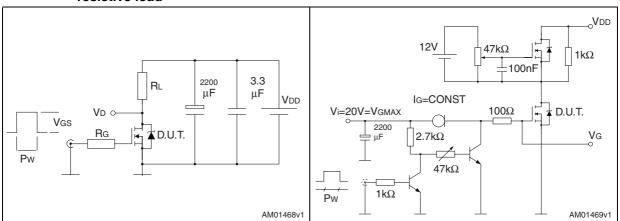


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped Inductive load test circuit

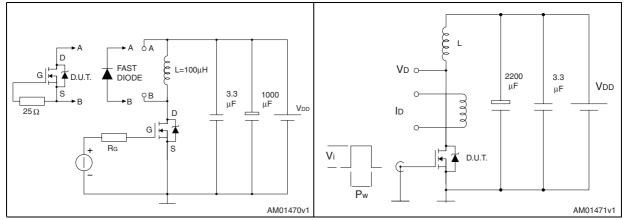


Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

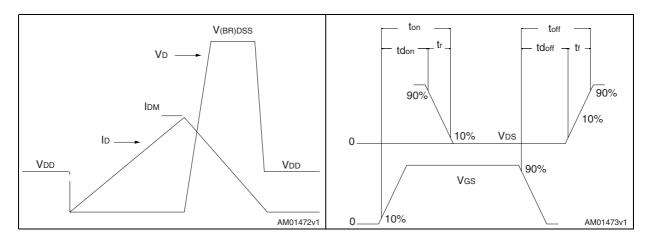
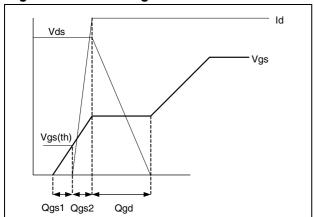
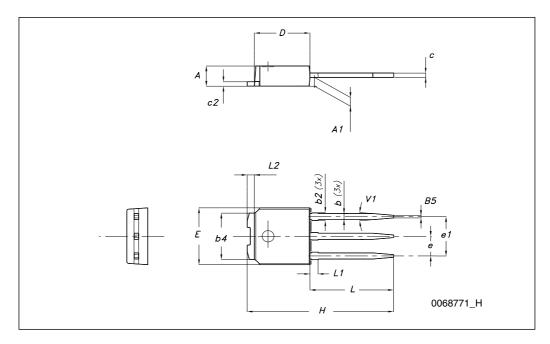



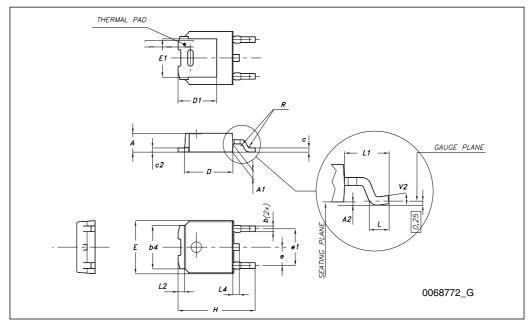
Figure 19. Gate charge waveform


4 Package mechanical data

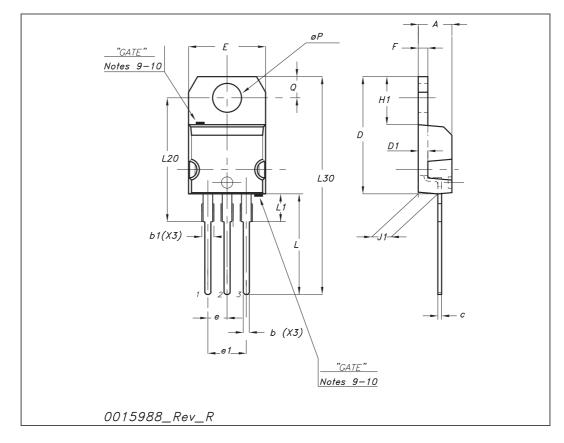
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

577

TO-251 (IPAK) mechanical data

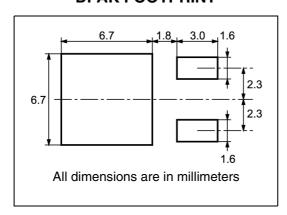

DIM.	mm.				
DIWI.	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
(L1)	0.80		1.20		
L2		0.80			
V1		10 °			

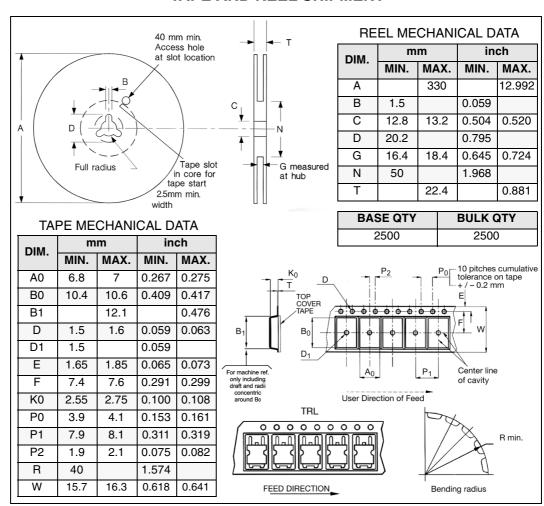
TO-252 (DPAK) mechanical data


DIM.		mm.			
	min.	typ	max.		
A	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1				
L1		2.80			
L2		0.80			
L4	0.60		1		
R		0.20			
V2	0 °		8 °		

577

TO-220 mechanical data


Di		mm			inch	
Dim	Min	Тур	Max	Min	Тур	Max
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.48		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.051
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
ØP	3.75	İ	3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
01-Dec-2008	1	First release
20-Jul-2009	2	Document status promoted from preliminary data to datasheet Added new package, mechanical data: TO-220
10-Sep-2009	3	Q _{gs} and Q _{gd} values have been modified on <i>Table 5: Dynamic</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

