

12 A 800 V Snubberless Triac in TO-220AB package

Features

- · Medium current Triac
- · High static and dynamic commutation
- Three quadrants
- ECOPACK2 compliant

Applications

- · General purpose AC line load switching
- Motor control circuits
- · Small home appliances
- Lighting
- · Inrush current limiting circuits
- Overvoltage crowbar protection

Description

Available in through-hole package, the T1235T-8T Triac can be used for the on/off or phase angle control function in general purpose AC switching where high commutation capability is required.

This device can be used without a snubber circuit when the limits defined in this datasheet are respected.

Product status link
T1235T-8T

Product summary			
Order code	T1235T-8T		
Package	TO-220AB		
I _{T(RMS)}	12 A		
V _{DRM} /V _{RRM}	800 V		
V _{DSM} /V _{RSM}	900 V		
I _{GT}	35 mA		

1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

Symbol	Parameter				Unit
I _{T(RMS)}	On-state RMS current (full sine wave)			12	Α
I _{TSM}	Non reportitive curren peak on atota current (T. initial = 25 °C)		t = 20 ms	90	Α
TSM	Non repetitive surge peak on-state current (T _j initial = 25 °C)	F = 60 Hz	t = 16.7 ms	95	
I ² t	I^2 t value for fusing, (T_j initial = 25 °C)		t _p = 10 ms	54	A ² s
V\/	Departitive current needs off state voltage		T _j = 150 °C	600	.,
V _{DRM} /V _{RRM}	Repetitive surge peak off-state voltage	T _j = 125 °C	800	V	
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage t_p = 10 ms				V
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $tr \le 100 \text{ ns}$	F = 100 Hz			A/µs
I _{GM}	Peak gate current t_p = 20 μs T_j = 150 $^{\circ}C$			4	Α
P _{G(AV)}	Average gate power dissipation	1	W		
T _{stg}	Storage junction temperature range				°C
Tj	Operating junction temperature range			-40 to +150	°C
T _L	Maximum lead temperature soldering during 10 s			260	°C

Table 2. Electrical characteristics (T_j = 25 °C unless otherwise specified)

Symbol	Test conditions			Value	Unit
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V. R}_1 = 30 \Omega$	1 - 11 - 111	Min.	1.75	mA
IGT (7	VD = 12 V, NL = 30 Ω	1 - 11 - 111	Max.	35	IIIA
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$	1 - 11 - 111	Max.	1.3	V
V_{GD}	$V_D = V_{DRM}$, $R_L = 3.3 \text{ k}\Omega$, $T_j = 150 ^{\circ}\text{C}$	1 - 11 - 111	Min.	0.2	V
I _H	I _T = 500 mA	<u> </u>	Max.	40	mA
IL	$I_{G} = 1.2 \times I_{GT}$	1 - 111	Max.	60	mA
'L		II	IVIAX.	65	
dV/dt ⁽²⁾	V _D = 536 V, gate open	T _j = 125 °C	Min	2000	\//··-
av/at(=)	VD = 402 V, gate open	T _j = 150 °C	— Min.	1000	V/µs
(11/11) (2)	Without and benefit (IV/III) and COV/III	T _j = 125 °C	D. di	12	A/ms
(dl/dt)c ⁽²⁾	Without snubber (dV/dt)c > 20 V/μs	T _j = 150 °C	Min.	6	

^{1.} Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

DS9635 - Rev 4 page 2/11

^{2.} For both polarities of A2 referenced to A1

Table 3. Static characteristics

Symbol	Tes	Test conditions			Unit
V _T ⁽¹⁾	I_{TM} = 17 A, t_p = 380 µs	T _j = 25 °C	Max.	1.55	V
V _{TO} ⁽¹⁾	Threshold voltage	T _j = 150 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	37	mΩ
	V V 900 V	T _j = 25 °C	Mari	7.5	μA
I _{DRM} , I _{RRM}	$V_D = V_R = 800 \text{ V}$	T _j = 125 °C	Max.	1.0	mΛ
	V _D = V _R = 600 V	T _j = 150 °C	Max.	2.7	mA mA

^{1.} For both polarities of A2 referenced to A1

Table 4. Thermal parameters

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	1.3	°C/W
R _{th(j-a)}	Junction to ambient	60	°C/W

1.1 Characteristics curves

Figure 1. Maximum power dissipation versus on-state RMS current (full cycle)

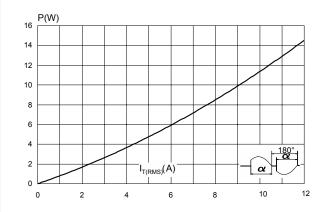


Figure 2. On-state RMS current versus case temperature (full cycle)

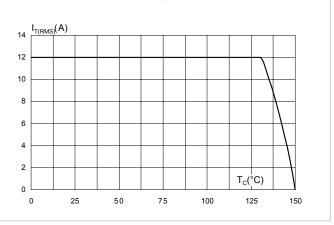


Figure 3. On-state RMS current versus ambient temperature (free air convection)

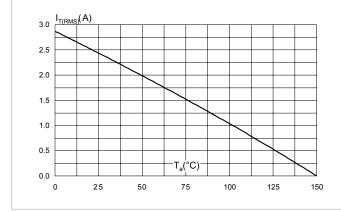


Figure 4. Relative variation of thermal impedance versus pulse duration

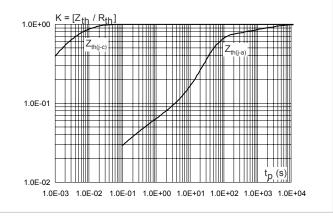


Figure 5. On-state characteristics (maximum values)

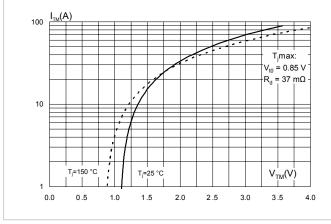
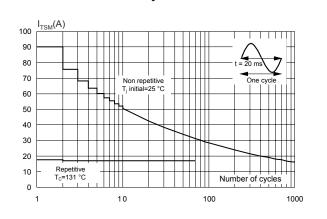



Figure 6. Surge peak on-state current versus number of cycles

DS9635 - Rev 4 page 4/11

Figure 7. Non repetitive surge peak on-state current

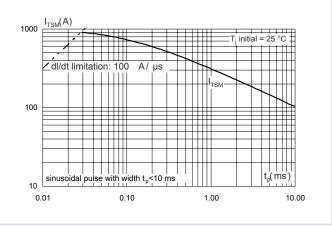


Figure 8. Relative variation of gate trigger current and gate voltage versus junction temperature (typical values)

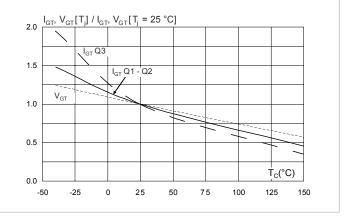


Figure 9. Relative variation of static dV/dt immunity versus junction temperature (typical values)

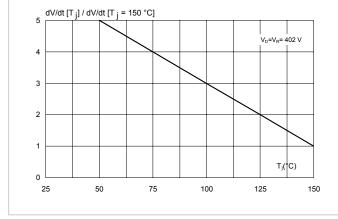


Figure 10. Relative variation of holding current and latching current versus junction temperature (typical values)

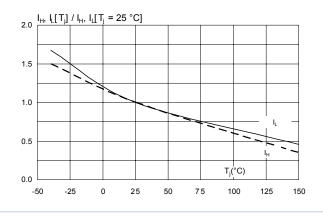
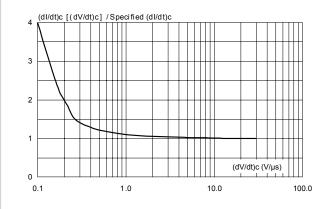
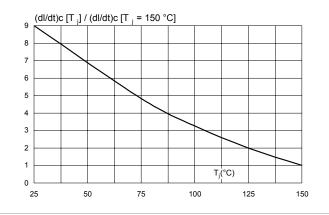
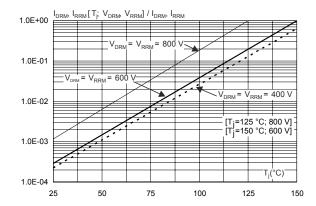


Figure 11. Relative variation of critical rate of decrease of main current (di/dt)c versus reapplied (dV/dt)c (typical values)


Figure 12. Relative variation of critical rate of decrease of main current (di/dt)c versus junction temperature (typical values)

DS9635 - Rev 4 page 5/11

Figure 13. Relative variation of leakage current versus junction temperature for $V_D = V_{DRM} / V_R = V_{RRM}$ blocking voltage (typical values)

DS9635 - Rev 4 page 6/11

Package information

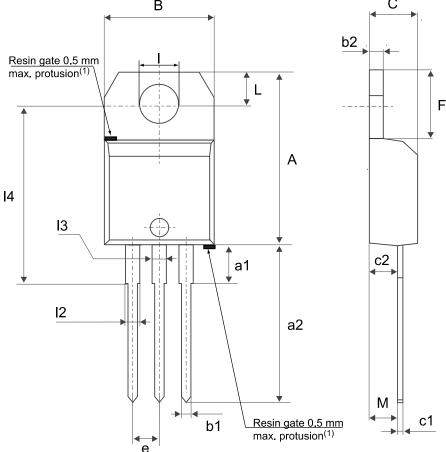

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 14. TO-220AB package outline

2.1 TO-220AB package information

- Epoxy resin is halogen free and meets UL94 flammability standard, level V0
- Lead-free plating package leads
- Recommended torque: 0.4 to 0.6 N·m

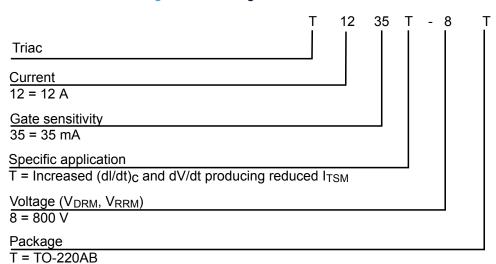
В

(1)Resin gate position accepted in one of the two positions or in the symmetrical opposites.

DS9635 - Rev 4 page 7/11

Table 5. TO-220AB package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	15.20		15.90	0.5984		0.6260	
a1		3.75			0.1476		
a2	13.00		14.00	0.5118		0.5512	
В	10.00		10.40	0.3937		0.4094	
b1	0.61		0.88	0.0240		0.0346	
b2	1.23		1.32	0.0484		0.0520	
С	4.40		4.60	0.1732		0.1811	
c1	0.49		0.70	0.0193		0.0276	
c2	2.40		2.72	0.0945		0.1071	
е	2.40		2.70	0.0945		0.1063	
F	6.20		6.60	0.2441		0.2598	
I	3.73		3.88	0.1469		0.1528	
L	2.65		2.95	0.1043		0.1161	
12	1.14		1.70	0.0449		0.0669	
13	1.14		1.70	0.0449		0.0669	
14	15.80	16.40	16.80	0.6220	0.6457	0.6614	
M		2.6			0.1024		


^{1.} Inch dimensions are for reference only.

DS9635 - Rev 4 page 8/11

3 Ordering information

Figure 15. Ordering information scheme

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
T1235T-8T	T1235T-8T	TO-220AB	2.0 g	50	Tube

DS9635 - Rev 4 page 9/11

Revision history

Table 7. Document revision history

Date	Revision	Changes
05-Aug-2013	1	Initial release.
01-Jul-2014	2	Updated Table 2.
28-Jul-2014	3	Updated Table 5.
13-Sep-2019	4	Updated Figure 14 and Table 5.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS9635 - Rev 4 page 11/11