
Datasheet

N-channel 650 V, 390 mΩ typ., 8.5 A MDmesh M5 Power MOSFET in a TO-220FP and TO-220 packages

TO-220FP

Features

Order code	V _{DS} @ T _J max.	R _{DS(on)} max.	۱ _D	
STF12N65M5	710 V	430 mΩ	8.5 A	
STP12N65M5	710 V	430 1102	0.5 A	
Extremely low Research				

- emely low R_{DS(on)}
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

Switching applications

Description

lectronics sales office.

This device is an N-channel Power MOSFET based on the MDmesh M5 innovative vertical process technology combined with the well-known PowerMESH horizontal layout. The resulting product offers extremely low on-resistance, making it particularly suitable for applications requiring high power and superior efficiency.

Product status links				
STF12N65M5				
STP12N65M5				

Product summary				
Order code	STF12N65M5			
Marking	12N65M5			
Package	TO-220FP			
Packing	Tube			
Order code	STP12N65M5			
Marking	12N65M5			
Package	TO-220			
Packing Tube				

1 Electrical ratings

Symphol	Devementer	Valu	e	Unit
Symbol	Parameter	TO-220FP	TO-220	Unit
V _{DS}	Drain-source voltage	650)	V
V _{GS}	Gate-source voltage	25		V
1	Drain current (continuous) at T _C = 25 °C	8.5 ⁽¹⁾	8.5	•
۱D	I _D Drain current (continuous) at T _C = 100 °C		5.4	A
I _{DM} ⁽²⁾	Drain current (pulsed)	34	34	А
P _{TOT}	Total power dissipation at T_C = 25 °C	25	70	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_J max.)	2.5		А
E _{AS}	Single pulse avalanche energy (starting T _J = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	150		mJ
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)			kV
T _{stg}	Storage temperature range			°C
TJ	T _J Operating junction temperature range		-55 to 150	

Table 1. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width is limited by safe operating area.

3. $I_{SD} \le 8.5 \text{ A}, \text{ di/dt} \le 400 \text{ A/}\mu\text{s}, V_{DS} \text{ (peak)} < V_{(BR)DSS}, V_{DD} = 400 \text{ V}.$

Table 2. Thermal data

Symbol	Parameter		Value		
Symbol		TO-220FP	TO-220	Unit	
R _{thJC}	Thermal resistance, junction-to-case	5.00	1.79	°C/W	
R _{thJA}	R _{thJA} Thermal resistance, junction-to-ambient		5	°C/W	

2 Electrical characteristics

57

 T_C = 25 $^\circ C$ unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	650			V
I = = =	Zoro goto voltago drain ourrent	V_{GS} = 0 V, V_{DS} = 650 V			1	
IDSS	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 650 V, T_{C} = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 4.3 A		390	430	mΩ

Table 3. On/off states

1. Specified by design, not tested in production.

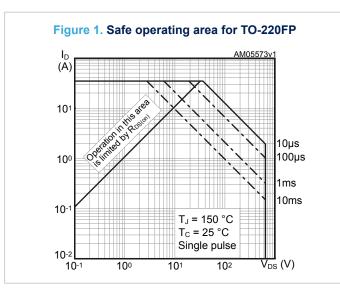
Table 4. Dynamic

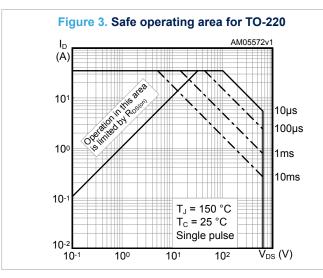
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	900	-	pF
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V	-	22	-	pF
C _{rss}	Reverse transfer capacitance		-	2	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0 V f = 1 MHz, I _D = 0 A		64	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related			21	-	pF
Rg	Intrinsic gate resistance			5	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 4.25 A, V _{GS} = 0 to 10 V	-	20	-	nC
Q _{gs}	Gate-source charge	(see Figure 17. Test circuit for gate	-	4.8	-	nC
Q _{gd}	Gate-drain charge	charge behavior)		8.3	-	nC

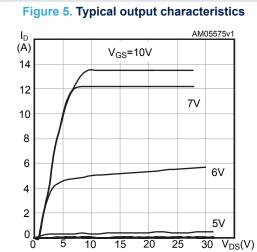
1. C_{o(tr)} is an equivalent capacitance that provides the same charging time as C_{oss} while V_{DS} is rising from 0 V to the stated value.

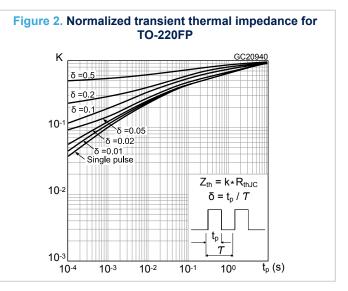
C_{o(er)} is an equivalent capacitance that provides the same stored energy as C_{oss} while V_{DS} is rising from 0 V to the stated value.

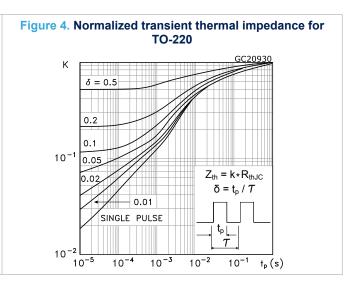
Table 5. Switching times

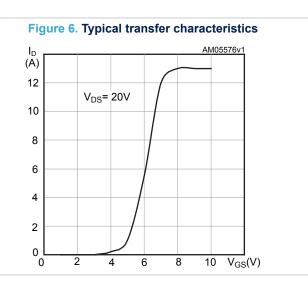

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	V _{DD} = 400 V, I _D = 5 A,	-	22.6	-	ns
t _{r(v)}	Voltage rise time	R_G = 4.7 Ω , V_{GS} = 10 V	-	17.6	-	ns
t _{f(i)}	Current fall time	(see Figure 18. Test circuit for inductive load switching and diode recovery times and Figure 21. Switching time waveform)		15.6	-	ns
t _{c(off)}	Crossing time			23.4	-	ns

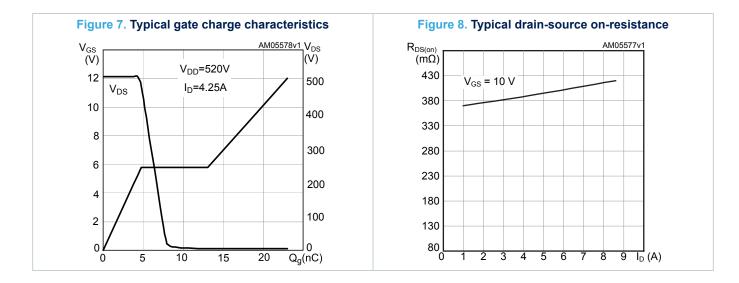

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		8.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		34	А
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 8.5 A, V_{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 8.5 A, di/dt = 100 A/µs,	-	230		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V	-	2.2		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	19		А
t _{rr}	Reverse recovery time	I_{SD} = 8.5 A, di/dt = 100 A/µs,	-	280		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V, T _J = 150 °C	-	2.7		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	19		А

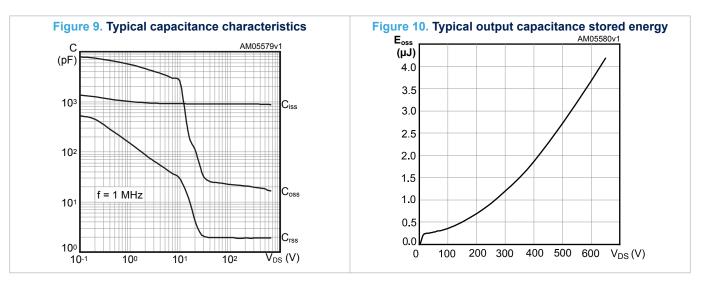

1. Pulse width is limited by safe operating area.


2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%.


2.1 Electrical characteristics (curves)







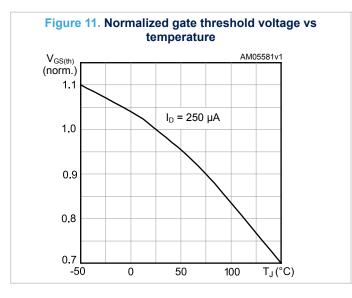
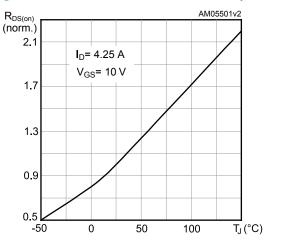
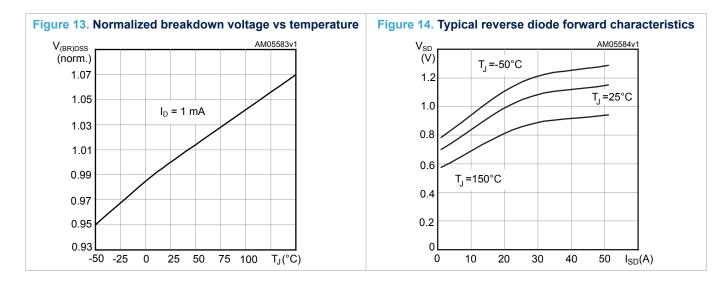
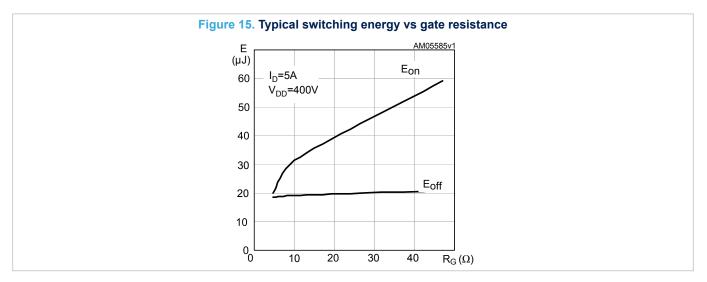
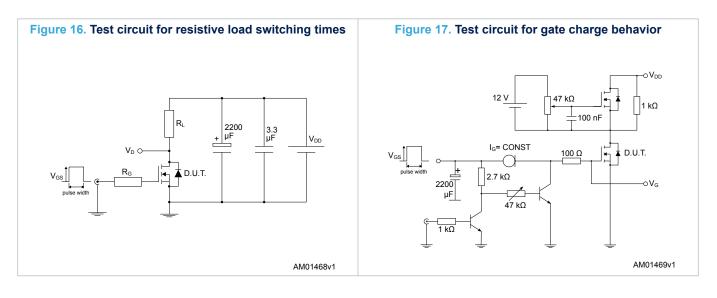
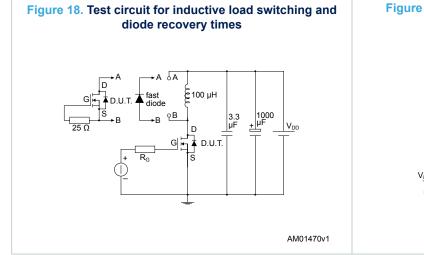
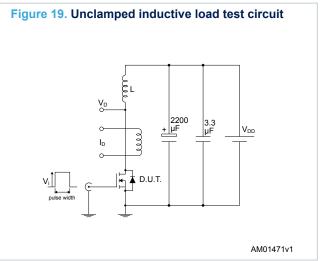
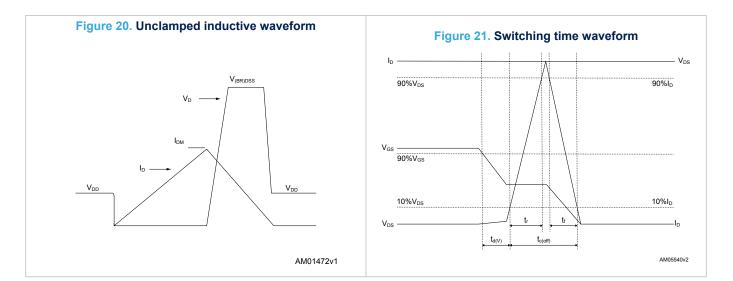





Figure 12. Normalized on-resistance vs temperature

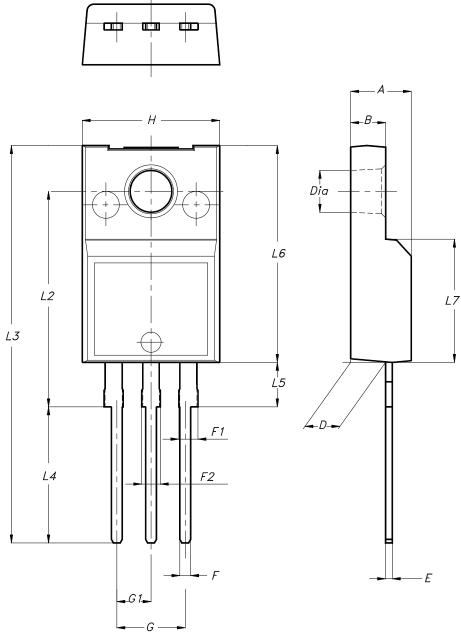








3 Test circuits

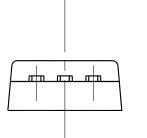

57

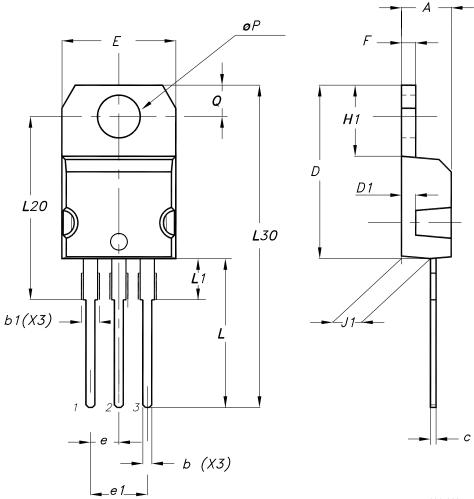
4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220FP package information

7012510_Rev_13_B


Dim.		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
В	2.50		2.70
D	2.50		2.75
E	0.45		0.70
F	0.75		1.00
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.20
G1	2.40		2.70
Н	10.00		10.40
L2		16.00	
L3	28.60		30.60
L4	9.80		10.60
L5	2.90		3.60
L6	15.90		16.40
L7	9.00		9.30
Dia	3.00		3.20


Table 7. TO-220FP package mechanical data

4.2 TO-220 type A package information

57

Figure 23. TO-220 type A package outline

0015988_typeA_Rev_23

Dim. –		mm	
	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
e	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95
Slug flatness		0.03	0.10

Table 8. TO-220 type A package mechanical data

Revision history

Date	Version	Changes
24-Feb-2009	1	First release.
27-Feb-2009	2	Corrected package information on first page.
21-Jan-2010	3	Document status promoted from preliminary data to datasheet.
29-Jun-2010	4	 <i>– Figure 15: Normalized on resistance vs temperature</i> has been updated. – V_{GS} value in <i>Table 4</i> has been corrected.
22-Jun-2011	5	Updated <i>Figure 18</i> and <i>Figure 20.</i> Updated gate charge in <i>Table 5</i> and switching time in <i>Table 6</i> .
11-Mar-2022	6	The part numbers STD12N65M5, STI12N65M5 and STU12N65M5 have been removed and the document has been updated accordingly. Updated title, Features and Description on cover page. Modified R _g value in the Table 4. Dynamic. Updated Section 4 Package information. Minor text changes.

Table 9. Document revision history

Contents

1	Elect	rical ratings	.2		
2	Electrical characteristics				
	2.1	Electrical characteristics (curves)	. 5		
3	Test o	circuits	.8		
4	4 Package information				
	4.1	TO-220FP package information	. 9		
	4.2	TO-220 type A package information	11		
Rev	ision h	nistory	13		

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved