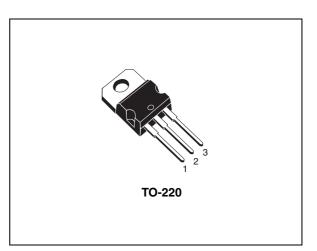


STP40NF10L

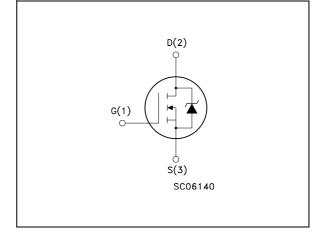
N-channel 100V - 0.028Ω - 40A TO-220 Low gate charge STripFET™ Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	۱ _D
STP40NF10L	100V	<0.033Ω	40A


- Exceptional dv/dt capability
- 100% avalanche tested
- Application oriented characterization

Description


This Power MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP40NF10L	P40NF10L	TO-220	Tube

January	2007
---------	------

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 6
3	Test circuit
4	Package mechanical data 9
5	Revision history11

Electrical ratings

Table 1.	Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (v _{gs} = 0)	100	V
V _{GS}	Gate- source voltage	±17	V
I _D	Drain current (continuous) at $T_C = 25^{\circ}C$	40	А
I _D	Drain current (continuous) at $T_C = 100^{\circ}C$	25	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	160	А
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	150	W
	Derating factor	1	W/°C
E _{AS} ⁽²⁾	Single pulse avalanche energy	430	mJ
T _{stg}	Storage temperature	– 65 to 175	J°
Тj	Max. operating junction temperature	175	0

1. Pulse width limited by safe operating area

2. Starting T_j = 25°C, I_D = 20A, V_{DD} =40V

Table 2. Thermal data

R _{thj-case}	Thermal resistance junction-case Max	1	°C/W
R _{thj-a}	Thermal resistance junction-ambient Max	62.5	°C/W
т	Maximum lead temperature for soldering purpose	300	°C

2 Electrical characteristics

(T_{CASE} =25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	100			V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} = Max rating V _{DS} =Max rating, T _C =125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 17V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	1.7	2.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V$, $I_D = 20A$ $V_{GS} = 5V$, $I_D = 20A$		0.028 0.030	0.033 0.036	Ω Ω

Table 3. On/off states

Table 4. Dynamic

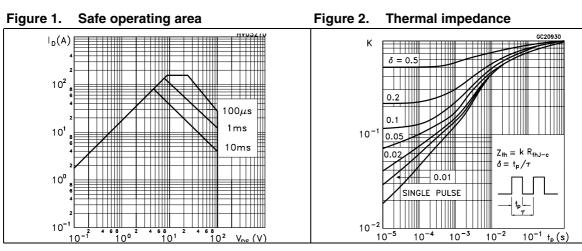
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15V _, I _D =20A		25		S
C _{iss}	Input capacitance			2300		pF
C _{oss}	Output capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		290		pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0		125		pF
Qg	Total gate charge			46	64	nC
Q _{gs}	Gate-source charge	$V_{DD} = 80V, I_D = 40A,$ $V_{GS} = 5V$		12		nC
Q _{gd}	Gate-drain charge	VGS - UV		22		nC

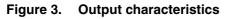
1. Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$\label{eq:VDD} \begin{split} V_{DD} &= 50 V, \ I_D = 20 A \\ R_G &= 4.7 \Omega \ V_{GS} = 4.5 V \\ (see \ Figure \ 13) \end{split}$		25 82		ns ns
t _{d(off)} t _f	Turn-off-delay time Fall time	$V_{DD} = 50V, I_D = 20A,$ $R_G = 4.7\Omega, V_{GS} = 4.5V$ (see Figure 13)		64 24		ns ns
t _{d(off)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over time	$\label{eq:Vclamp} \begin{array}{l} \mbox{Vclamp} = \mbox{80V}, \ \mbox{I}_D = \mbox{40 A} \\ \mbox{R}_G = \mbox{4.5V} \\ \mbox{(see Figure 15)} \end{array}$		51 29 53		ns ns ns

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current				40	Α
$I_{SDM}^{(1)}$	Source-drain current (pulsed)				160	А
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 40A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 40A, V_{DD} = 30V$ di/dt = 100A/µs, T _j = 150°C (see Figure 15)		110 467 8		ns nC A


Table 6. Source drain diode


1. Pulse width limited by safe operating area.

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics (curves) 2.1

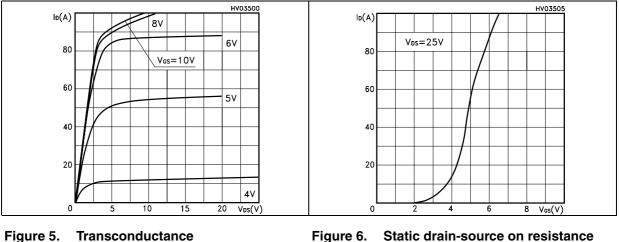
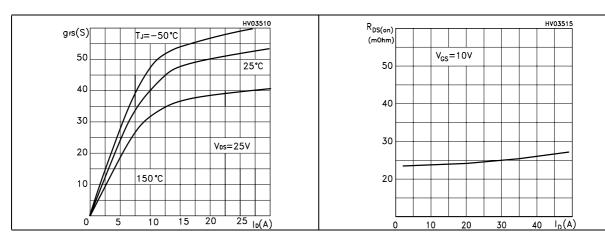
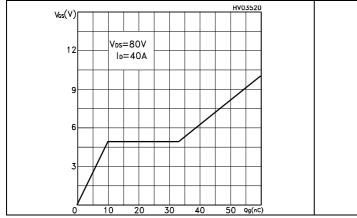




Figure 4.

Transfer characteristics

Figure 7. Gate charge vs. gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs. temperature

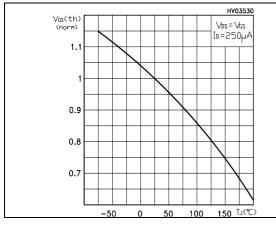


Figure 11. Source-drain diode forward characteristics

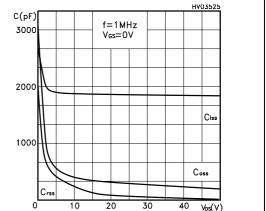


Figure 10. Normalized on resistance vs. temperature

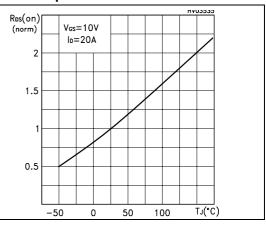
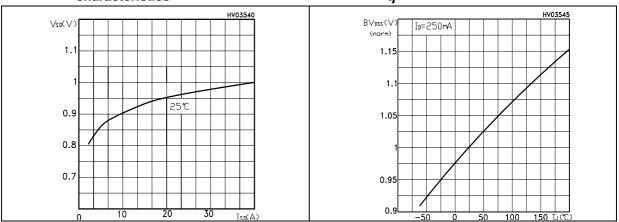
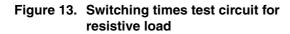




Figure 12. Normalized breakdown voltage vs. tj

57

3 Test circuit

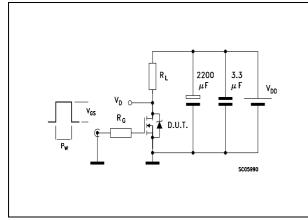
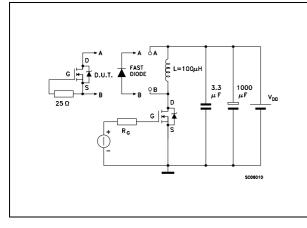
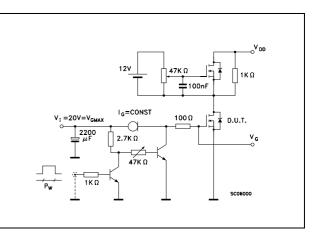




Figure 15. Test circuit for inductive load switching and diode recovery times

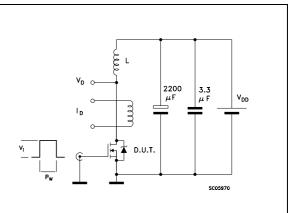
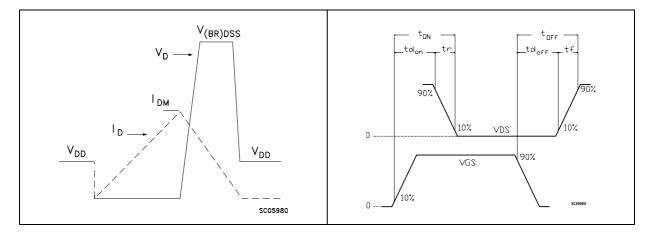
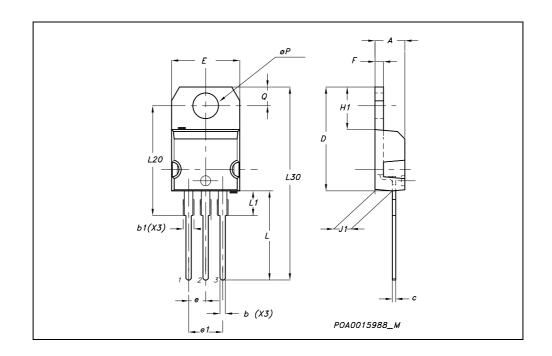



Figure 18. Switching time waveform

Figure 14. Gate charge test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at : *www.st.com*

DIM.		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øР	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-220 MECHANICAL DATA

5 Revision history

Date	Revision	Changes
09-Sep-2004	1	First version.
17-Aug-2006	2	The document has been reformatted.
31-Jan-2007	3	Typo mistake on Table 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12

