BC549C, BC550C

Low Noise Transistors

NPN Silicon

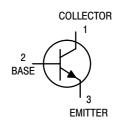
Features

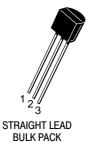
• These are Pb-Free Devices*

MAXIMUM RATINGS

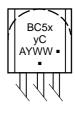
Rating	Symbol	Value	Unit
Collector – Emitter Voltage BC549C BC550C	V _{CEO}	30 45	Vdc
Collector – Base Voltage BC549C BC550C	V _{CBO}	30 50	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	IC	100	Vdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®


http://onsemi.com

TO-92 CASE 29 STYLE 17

MARKING DIAGRAM

BC5xyC = Device Code x = 4 or 5

y = 9 or 0

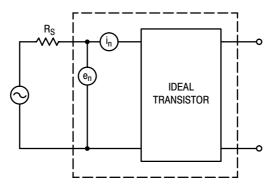
A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
BC549CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC550CG	TO-92 (Pb-Free)	5000 Units / Bulk


^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BC549C, BC550C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	45	-	_	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	V _{(BR)CBO}	50	-	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	_	-	Vdc
Collector Cutoff Current	I _{CBO}	- -	- -	15 5.0	nAdc μAdc
Emitter Cutoff Current $(V_{EB} = 4.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	-	15	nAdc
ON CHARACTERISTICS					
DC Current Gain	h _{FE}	100 420	270 500	_ 800	-
Collector – Emitter Saturation Voltage	V _{CE(sat)}	- - -	0.075 0.3 0.25	0.25 0.6 0.6	Vdc
Base–Emitter Saturation Voltage $(I_C = 100 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	V _{BE(sat)}	-	1.1	-	Vdc
$\label{eq:base-Emitter On Voltage} \begin{split} \text{Base-Emitter On Voltage} \\ \text{($I_{C}=10$ μAdc, $V_{CE}=5.0$ Vdc)} \\ \text{($I_{C}=100$ μAdc, $V_{CE}=5.0$ Vdc)} \\ \text{($I_{C}=2.0$ mAdc, $V_{CE}=5.0$ Vdc)} \end{split}$	V _{BE(on)}	- - 0.55	0.52 0.55 0.62	- - 0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS	·				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	f _T	_	250	_	MHz
Collector–Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cbo}	_	2.5	_	pF
Small–Signal Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 5.0 \text{ V}$, $f = 1.0 \text{ kHz}$)	h _{fe}	450	600	900	-
Noise Figure $ \begin{array}{l} \text{(I$_{C}$ = 200 μAdc, V_{CE}$ = 5.0 Vdc, R_{S}$ = 2.0 kΩ, f = 1.0 kHz)} \\ \text{(I$_{C}$ = 200 μAdc, V_{CE}$ = 5.0 Vdc, R_{S}$ = 100 kΩ, f = 1.0 kHz)} \end{array} $	NF ₁ NF ₂	_ _	0.6	2.5 10	dB

I_B is value for which I_C = 11 mA at V_{CE} = 1.0 V.
 Pulse test = 300 μs – Duty cycle = 2%.

Figure 1. Transistor Noise Model

BC549C, BC550C

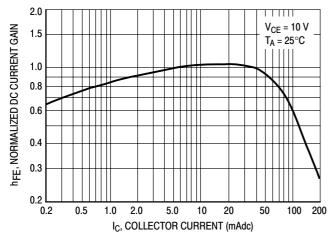


Figure 2. Normalized DC Current Gain

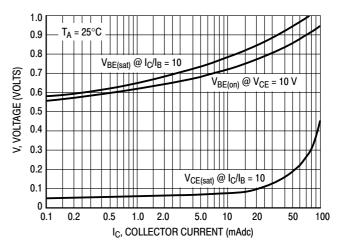


Figure 3. "Saturation" and "On" Voltages

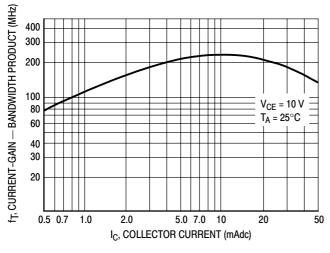


Figure 4. Current-Gain — Bandwidth Product

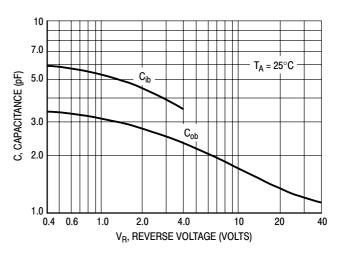


Figure 5. Capacitance

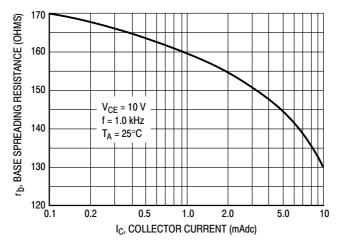
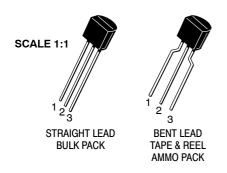
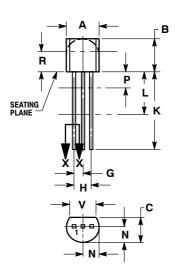
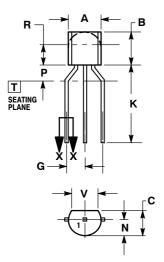




Figure 6. Base Spreading Resistance

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIN	IETERS
DIM	MIN	MAX
Α	4.45	5.20
В	4.32	5.33
С	3.18	4.19
D	0.40	0.54
G	2.40	2.80
J	0.39	0.50
K	12.70	
N	2.04	2.66
P	1.50	4.00
R	2.93	
V	3.43	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	TO-92 (TO-226)	PAGE 1 OF 3

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE		
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	CATHODE GATE ANODE
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER BASE	PIN 1.	SOURCE	PIN 1.	GATE SOURCE DRAIN	PIN 1.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1.	MT 1
	Vcc	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	PIN 1.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN GATE
	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	2.	INPUT GROUND LOGIC	2.	GATE

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	•
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3

ON Semiconductor®

DOCUMENT NUMBER: 98ASB42022B

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative