2N5038

NPN Silicon Transistors

Fast switching speeds and high current capacity ideally suit these parts for use in switching regulators, inverters, wide-band amplifiers and power oscillators in industrial and commercial applications.

Features

- High Speed $t_f = 0.5 \mu s$ (Max)
- High Current $I_{C(max)} = 30 \text{ Amps}$
- Low Saturation $V_{CE(sat)} = 2.5 \text{ V (Max)} @ I_C = 20 \text{ Amps}$
- Pb-Free Package is Available*

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	90	Vdc
Collector-Base Voltage	V_{CBO}	150	Vdc
Collector-Emitter Voltage	V _{CEV}	150	Vdc
Emitter-Base Voltage	V _{EBO}	7	Vdc
Collector Current - Continuous Peak (Note 2)	I _C I _{CM}	20 30	Adc
Base Current - Continuous	Ι _Β	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P_{D}	140 0.8	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.25	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Indicates JEDEC Registered Data.
- 2. Pulse Test: Pulse Width \leq 10 ms, Duty Cycle \leq 50%.

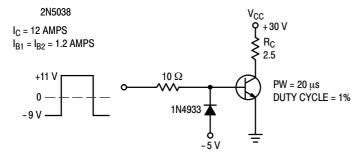


Figure 1. Switching Time Test Circuit

ON Semiconductor®

http://onsemi.com

20 AMPERE NPN SILICON POWER TRANSISTORS 90 VOLTS – 140 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAMS

G = Pb-Free Package A = Assembly Location

YY = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N5038

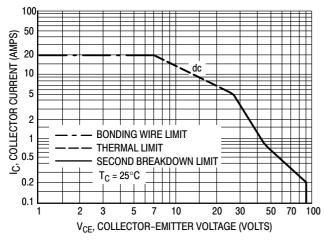
ELECTRICAL CHARACTERISTICS (T_C = 25 °C unless otherwise noted) (Note 3)

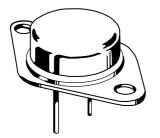
Characteristic		Symbol	Min	Max	Unit
OFF CHARACTE	RISTICS		•	•	•
Collector-Emitter (I _C = 200 mAc	Sustaining Voltage (Note 4) dc, I _B = 0)	V _{CEO(sus)}	90	-	Vdc
Collector Cutoff C (V _{CE} = 140 V _{CE} (V _{CE} = 100 V _{CE}	I _{CEX}	- -	50 10	mAdc	
Emitter Cutoff Current $(V_{EB} = 5 \text{ Vdc}, I_C = 0)$ $(V_{EB} = 7 \text{ Vdc}, I_C = 0)$		I _{EBO}	- -	5 50	mAdc
ON CHARACTER	RISTICS (Note 4)				•
DC Current Gain (I _C = 12 Adc,	V _{CE} = 5 Vdc)	h _{FE}	20	100	-
Collector-Emitter (I _C = 20 Adc,	Saturation Voltage I _B = 5 Adc)	V _{CE(sat)}	-	2.5	Vdc
Base-Emitter Saturation Voltage (I _C = 20 Adc, I _B = 5 Adc)		V _{BE(sat)}	-	3.3	Vdc
DYNAMIC CHAR	ACTERISTICS		•	•	•
Magnitude of Common–Emitter Small–Signal Short–Circuit Forward Current Transfer Ratio ($I_C = 2$ Adc, $V_{CE} = 10$ Vdc, $f = 5$ MHz)		h _{fe}	12	-	-
SWITCHING CHA	RACTERISTICS		•	•	•
RESISTIVE LOA	D				
Rise Time	(V _{CC} = 30 Vdc)	t _r	-	0.5	μS
Storage Time	$(I_C = 12 \text{ Adc}, I_{B1} = I_{B2} = 1.2 \text{ Adc})$	t _s	-	1.5	μS

^{3.} Indicates JEDEC Registered Data.

ORDERING INFORMATION

Device	Package	Shipping
2N5038	TO-204	
2N5038G	TO-204 (Pb-Free)	100 Units / Tray

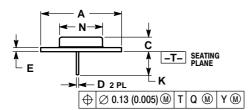


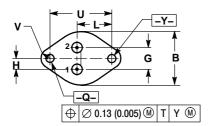

Figure 2. Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

Second breakdown pulse limits are valid for duty cycles to 10%. At high case temperatures, thermal limitations may reduce the power that can be handled to values less than the limitations imposed by second breakdown.

^{4.} Pulse Test: Pulse Width \leq 300, μ s, Duty Cycle \leq 2%.





TO-204 (TO-3) **CASE 1-07 ISSUE Z**

DATE 05/18/1988

SCALE 1:1

CTVLE 4

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		550 REF 39.37 REF	
В		1.050		26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215 BSC 5.46 BSC		BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
٧	0 131	0 188	3 33	4 77

PIN 1. BASE 2. EMITTER CASE: COLLECTOR	PIN 1. BASE 2. COLLECTOR CASE: EMITTER	PIN 1. GATE 2. SOURCE CASE: DRAIN	PIN 1. GROUND 2. INPUT CASE: OUTPUT	PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE
STYLE 6: PIN 1. GATE 2. EMITTER	STYLE 7: PIN 1. ANODE 2. OPEN CASE: CATHODE	STYLE 8: PIN 1. CATHODE #1 2. CATHODE #2	STYLE 9: PIN 1. ANODE #1 2. ANODE #2	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com

0