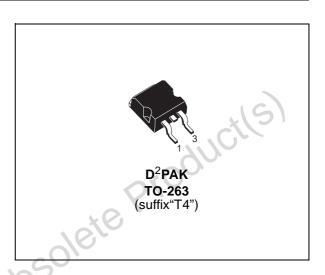


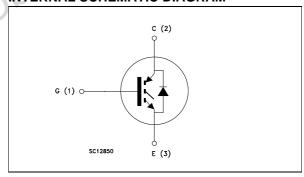
STGB3NB60SD

N-CHANNEL 3A - 600V D²PAK Power MESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGB3NB60SD	600 V	<1.5 V	3 A


- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- VERY LOW ON-VOLTAGE DROP (Vcesat)
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT
- INTEGRATED FREEWHEELING DIODE
- SURFACE-MOUNTING D²PAK (TO-263)
 POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")

DESCRIPTION


Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding perfomances. The suffix "S" identifies a family optimized to achieve minimum on-voltage drop for low frequency applications (<1kHz).

APPLICATIONS

- GAS DISCHARGE LAMP
- STATIC RELAYS
- MOTOR CONTROL

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{GE}	Gate-Emitter Voltage	± 20	V
I _C	Collector Current (continuos) at T _c =25°C	6	Α
I _C	Collector Current (continuos)at T _c =100°C	3	Α
I _{CM} (●)	Collector Current (pulsed)	25	Α
P _{tot}	Total Dissipation at T _c = 25°C	70	W
	Derating Factor	0.46	W/°C
T _{stg}	Storage Temperature	-60 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

(•)Pulse width limited by safe operating area.

November 2000 1/8

STGB3NB60SD

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	2.14	°C/W	ì
$R_{thj\text{-}amb}$	Thermal Resistance Junction-ambient	Max	62.5	°C/W	ı
$R_{thc\text{-sink}}$	Thermal Resistance Case-sink	Тур	0.5	°C/W	ì

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)	$V_{CE} = Max Rating$ $T_j = 25 °C$ $V_{CE} = Max Rating$ $T_j = 125 °C$			10 100	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$ $V_{CE} = 0$		Al	±100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$ $I_C = 250 \mu\text{A}$	2.5		5	V
V _{CE} (SAT)	Collector-Emitter Saturation Voltage	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		1 1.2 1.1	1.5	V V V

DYNAMIC

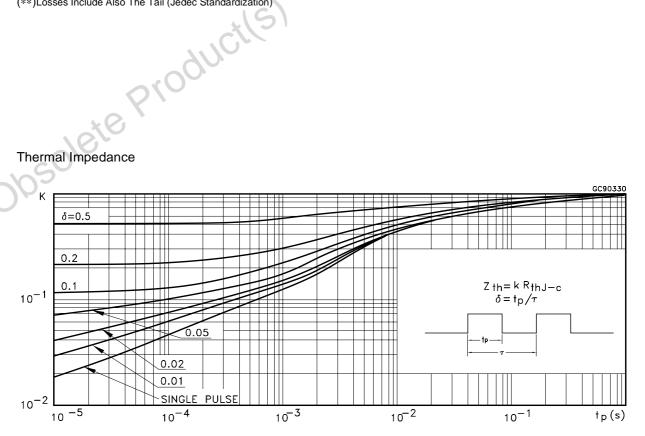
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 25 V I _C = 3 A	1.7	2.5		S
C _{ies}	Input Capacitance	$V_{CE} = 25V f = 1 MHz V_{GE} = 0$		255	330	pF
Coes	Output Capacitance			30	40	pF
C _{res}	Reverse Transfer Capacitances			5.6	7	pF
Q _G	Total Gate Charge	V _{CE} =480V I _C =3 A V _{GE} =15 V		18		nC
Q _{GE}	Gate-Emitter Charge			5.4		nC
Q _{GC}	Gate-Collector Charge			5.5		nC
ICL	Latching Current	$V_{clamp} = 480 \text{ V}$ $R_G = 1 \text{ K}\Omega$ $T_j=150 \text{ °C}$	12			Α

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	DelayTime Rise Time	$V_{CC} = 480 \text{ V}$ $I_{C} = 3 \text{ A}$ $V_{GE} = 15 \text{ V}$ $R_{G} = 1 \text{ ks}$	2	125 150		ns ns
(di/dt) _{on} E _{on}	Turn-on Current Slope Turn-on Switching Losses	$V_{CC} = 480 \text{ V}$ $I_{C} = 3 \text{ A}$ $V_{GE} = 15 \text{ V}$ $R_{G} = 1 \text{ kg}$ $T_{j} = 125 \text{ °C}$	2	50 1100		A/μs μJ

ELECTRICAL CHARACTERISTICS (continued)

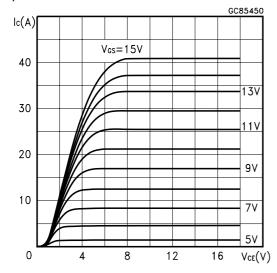
SWITCHING OFF

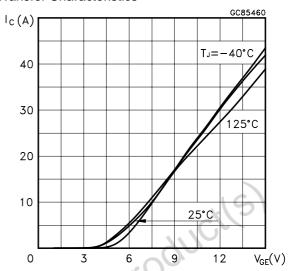

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t_{c} $t_{r(Voff)}$ $t_{d(Voff)}$ t_{f} $E_{off(**)}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss	$V_{CC} = 480 \text{ V}$ $I_{C} = 3 \text{ A}$ $V_{GE} = 15 \text{ V}$		1.8 1.0 3.4 0.72 1.15		բs բs բs բs ۳
$\begin{array}{c} t_{\text{C}} \\ t_{\text{r}}(\text{Voff}) \\ t_{\text{d}}(\text{Voff}) \\ t_{\text{f}} \\ E_{\text{off}}(**) \end{array}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss	$V_{CC} = 480 \text{ V}$ $I_{C} = 3 \text{ A}$ $R_{GE} = 1 \text{ k}\Omega$ $V_{GE} = 15 \text{ V}$ $T_{j} = 125 \text{ °C}$		2.8 1.45 3.6 1.2 1.8		μs μs μs μs mJ

COLLECTOR-EMITTER DIODE

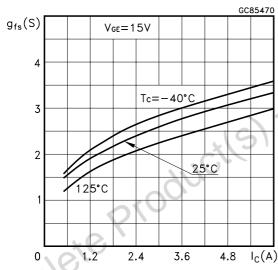
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _f	Forward Current Forward Current pulsed		8	0	3 25	A A
V _f	Forward On-Voltage	I _f = 3 A I _f = 1 A	S	1.55 1.15	1.9	V V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_f = 3 \text{ A}$ $V_R = 200 \text{ V}$ $T_j = 125 \text{ °C}$		1700 4500 9.5		ns nC A

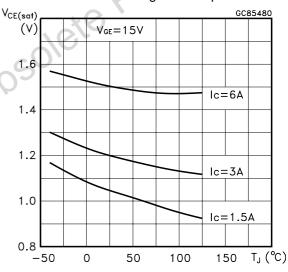
(•)Pulse width limited by max. junction temperature (*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. (**)Losses Include Also The Tail (Jedec Standardization)

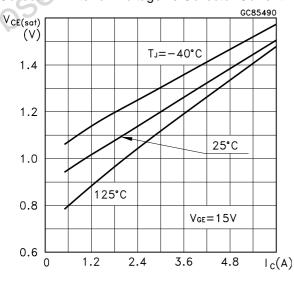

Thermal Impedance

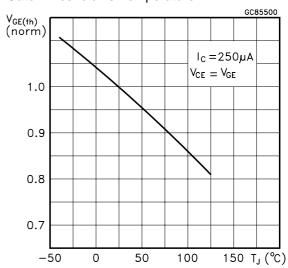

47/ 3/8

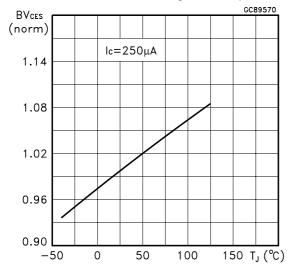
STGB3NB60SD

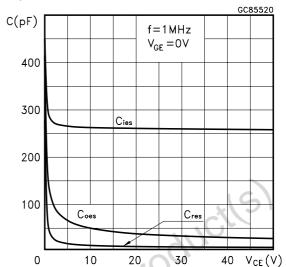

Output Characteristics

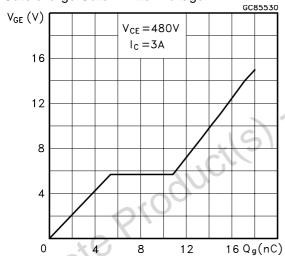

Transfer Characteristics

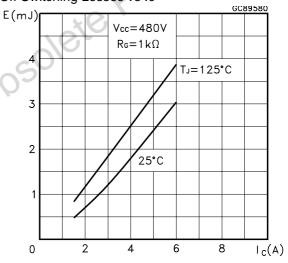

Transconductance

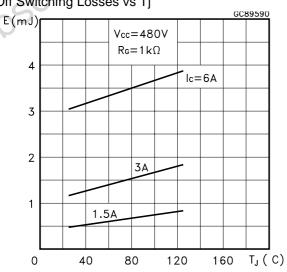

Collector-Emitter on Voltage vs Temperature

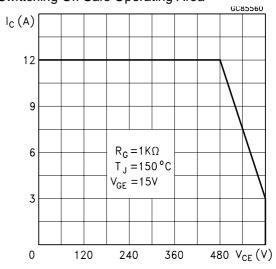

Collector-Emiter on Voltage vs Collector Current


Gate Threshold vs Temperature


Normalized Breakdown Voltage vs Temperature


Capacitance Variations


Gate charge Gate-Emitter Voltage


Off Switching Losses vs Ic

Off Switching Losses vs Tj

Swittching Off Safe Operating Area

Diode Forward vs Tj

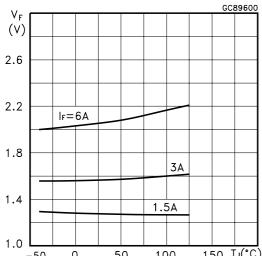
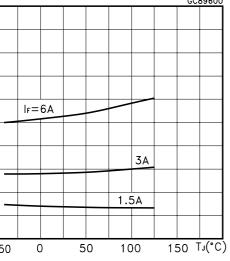



Fig. 1: Gate Charge test Circuit

Diode Forward Voltage

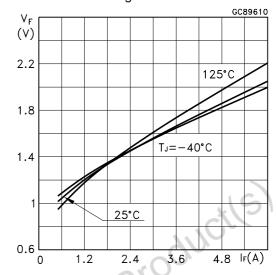
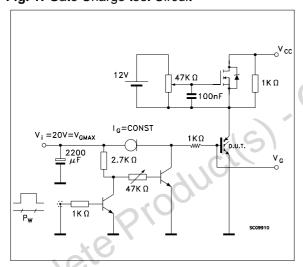



Fig. 2 Test Circuit For Inductive Load Switching

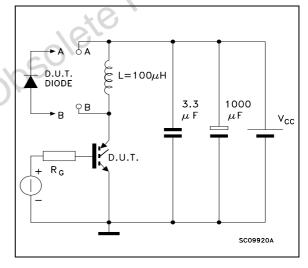
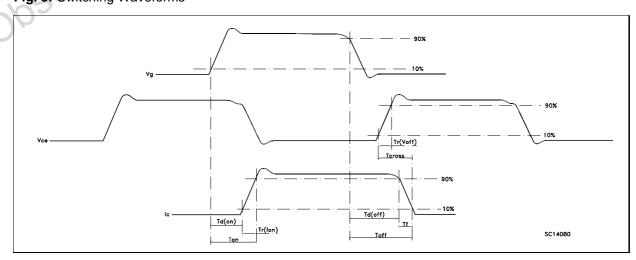
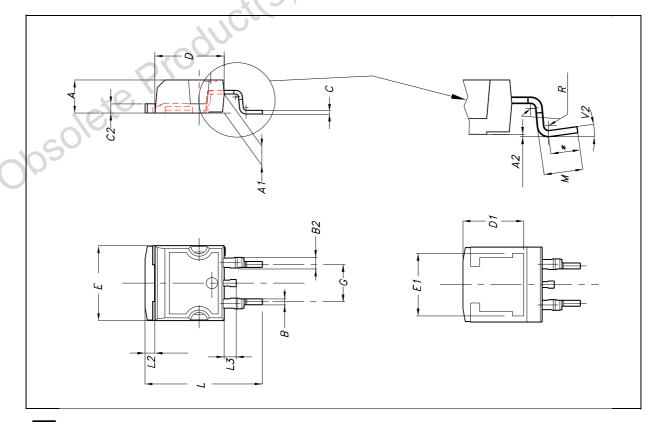



Fig. 3: Switching Waveforms



6/8

Downloaded from Arrow.com.

D²PAK MECHANICAL DATA

DIM.	mm.		inch			
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.393	100,	
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4	0.		0.015	
V2	00		8°			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics © 2000 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com