ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MJE18008, MJF18008

Switch-mode NPN Bipolar Power Transistor
 For Switching Power Supply Applications

The MJE/MJF18008 have an applications specific state-of-the-art die designed for use in 220 V line-operated switch-mode Power supplies and electronic light ballasts.

Features

- Improved Efficiency Due to Low Base Drive Requirements:
- High and Flat DC Current Gain h_{FE}
- Fast Switching
- No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Tight Parametric Distributions are Consistent Lot-to-Lot
- Two Package Choices: Standard TO-220 or Isolated TO-220
- MJF18008, Case 221D, is UL Recognized at 3500 V $_{\text {RMS }}$: File \#E69369
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEO }}$	450	Vdc
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {CES }}$	1000	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	9.0	Vdc
Collector Current - Continuous	I_{C}	8.0	Adc
Collector Current - Peak (Note 1)	$\mathrm{I}_{\text {CM }}$	16	Adc
Base Current - Continuous	I_{B}	4.0	Adc
Base Current - Peak (Note 1)	IBM	8.0	Adc
RMS Isolation Voltage (Note 2) Test No. 1 Per Figure 22a Test No. 1 Per Figure 22b Test No. 1 Per Figure 22c (for 1 sec, R.H. $<30 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	VISOL	$\begin{gathered} \hline \text { MJF18008 } \\ 4500 \\ 3500 \\ 1500 \end{gathered}$	V
	P_{D}	$\begin{gathered} 125 \\ 45 \\ 1.0 \\ 0.36 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case MJE18008 MJF18008	$\mathrm{R}_{\text {өJC }}$		1.0
2.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
2. Proper strike and creepage distance must be provided.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJE18008, MJF18008

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$)	$\mathrm{V}_{\text {CEO(sus) }}$	450	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\text {CEO }}, \mathrm{I}_{\mathrm{B}}=0$)	$I_{\text {CEO }}$	-	-	100	$\mu \mathrm{Adc}$
$\begin{array}{cl} \hline \text { Collector Cutoff Current }\left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CES}}, \mathrm{~V}_{\mathrm{EB}}=0\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{array}$	$I_{\text {CES }}$	-	-	$\begin{aligned} & 100 \\ & 500 \\ & 100 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=9.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{l}_{\text {EBO }}$	-	-	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}$) $\left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.9 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{aligned} & 0.82 \\ & 0.92 \end{aligned}$	$\begin{gathered} 1.1 \\ 1.25 \end{gathered}$	Vdc
$\begin{array}{ll} \hline \begin{array}{l} \text { Collector-Emitter Saturation Voltage } \\ \left(I_{C}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \end{array} & \\ \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.9 \mathrm{Adc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{gathered} 0.3 \\ 0.3 \\ 0.35 \\ 0.4 \end{gathered}$	$\begin{gathered} 0.6 \\ 0.65 \\ 0.7 \\ 0.8 \end{gathered}$	Vdc
DC Current Gain ($\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$) $\left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\left(I_{C}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\begin{aligned} & \left(T_{C}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{C}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{C}=125^{\circ} \mathrm{C}\right) \end{aligned}$ $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 14 \\ - \\ 6.0 \\ 5.0 \\ 11 \\ 11 \\ 10 \end{gathered}$	$\begin{aligned} & - \\ & 28 \\ & 9.0 \\ & 8.0 \\ & 15 \\ & 16 \\ & 20 \\ & \hline \end{aligned}$	34	-

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth ($\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$)				f_{T}	-	13	-	MHz
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)				$\mathrm{C}_{\text {ob }}$	-	100	150	pF
Input Capacitance ($\mathrm{V}_{\mathrm{EB}}=8.0 \mathrm{~V}$)				$\mathrm{C}_{\text {ib }}$	-	1750	2500	pF
Dynamic Saturation Voltage: Determined $1.0 \mu \mathrm{~s}$ and $3.0 \mu \mathrm{~s}$ respectively after rising $\mathrm{I}_{\mathrm{B} 1}$ reaches 90% of final $l_{B 1}$ (see Figure 18)	$\begin{gathered} \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}\right. \\ \mathrm{I}_{\mathrm{B} 1}=200 \mathrm{mAdc} \\ \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{gathered}$	$1.0 \mu \mathrm{~S}$	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {CE(dsat) }}$	-	$\begin{array}{r} \hline 5.5 \\ 11.5 \end{array}$	-	Vdc
		3.0 us	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		-	3.5 6.5	-	
	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}\right. \\ & \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{Adc} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	1.0 us	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		-	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	-	
		3.0 us	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		-	2.4 9.0	-	

SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=20 \mu \mathrm{~s}$)

Turn-On Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & \left(T_{C}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{C}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{t}_{\text {on }}$	-	200 190	300 -	ns
Turn-Off Time			$\mathrm{t}_{\text {off }}$	-	1.2 1.5	2.5 -	$\mu \mathrm{S}$
Turn-On Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=2.25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & \left(T_{C}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{C}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{t}_{\text {on }}$	-	$\begin{aligned} & \hline 100 \\ & 250 \end{aligned}$	180 -	ns
Turn-Off Time			$\mathrm{t}_{\text {off }}$	-	1.6 2.0	2.5 -	$\mu \mathrm{S}$

SWITCHING CHARACTERISTICS: Inductive Load (V ${ }_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$)

Fall Time	$\begin{gathered} \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc},\right. \\ \left.\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}\right) \end{gathered}$	$\begin{aligned} & \left(T_{C}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{C}=125^{\circ} \mathrm{C}\right) \end{aligned}$	t_{fi}	-	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	180	ns
Storage Time			t_{si}	-	1.5 1.9	2.75 -	$\mu \mathrm{S}$
Crossover Time		$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	t_{c}	-	$\begin{aligned} & 250 \\ & 230 \end{aligned}$	350 -	ns
Fall Time	$\begin{gathered} \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc},\right. \\ \left.\mathrm{I}_{\mathrm{B} 2}=2.25 \mathrm{Adc}\right) \end{gathered}$	($\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$)	t_{fi}	-	$\begin{gathered} \hline 85 \\ 135 \end{gathered}$	150	ns
Storage Time		($\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$)	t_{si}	-	2.0 2.6	3.2 -	$\mu \mathrm{S}$
Crossover Time		$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	t_{c}	-	210 250	300 -	ns

[^1]
MJE18008, MJF18008

TYPICAL STATIC CHARACTERISTICS

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 1. DC Current Gain @ 1 Volt

Figure 3. Collector Saturation Region

Figure 2. DC Current Gain @ 5 Volts

Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Base-Emitter Saturation Region

Figure 6. Capacitance

MJE18008, MJF18008

TYPICAL SWITCHING CHARACTERISTICS
($\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C}} / 2$ for all switching)

Figure 7. Resistive Switching, t_{on}

Figure 9. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 11. Inductive Switching, t_{c} and t_{fi} $I_{C} / I_{B}=5$

Figure 8. Resistive Switching, $\mathrm{t}_{\text {off }}$

Figure 10. Inductive Storage Time, $\mathrm{t}_{\mathbf{s i}}\left(\mathrm{h}_{\mathrm{FE}}\right)$

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 12. Inductive Switching, t_{c} and t_{fi} $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=10$

Figure 13. Inductive Fall Time

Figure 14. Inductive Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION

Figure 15. Forward Bias Safe Operating Area

Figure 17. Forward Bias Power Derating
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$

Figure 16. Reverse Bias Switching Safe Operating Area
limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

MJE18008, MJF18008

Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

MJE18008, MJF18008

TYPICAL THERMAL RESPONSE

Figure 20. Typical Thermal Response ($\mathrm{Z}_{\theta \mathrm{JC}}(\mathrm{t})$) for MJE18008

Figure 21. Typical Thermal Response ($\mathrm{Z}_{\theta \mathrm{Jc}}(\mathrm{t})$) for MJF18008

ORDERING INFORMATION

Device	Package	Shipping
MJE18008G	TO-220AB (Pb-Free)	50 Units / Rail
MJF18008G	TO-220 (Fullpack) (Pb-Free)	50 Units / Rail

TEST CONDITIONS FOR ISOLATION TESTS*

Figure 22a. Screw or Clip Mounting Position for Isolation Test Number 1

Figure 22b. Clip Mounting Position for Isolation Test Number 2
*Measurement made between leads and heatsink with all leads shorted together

MOUNTING INFORMATION**

Figure 23a. Screw-Mounted

Figure 23b. Clip-Mounted

Figure 23. Typical Mounting Techniques

for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to $8 \mathrm{in} \cdot \mathrm{lbs}$ is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of $20 \mathrm{in} \cdot \mathrm{lbs}$ will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted $4-40$ screws indicate that the screw slot fails between 15 to 20 in $\cdot \mathrm{lbs}$ without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding $10 \mathrm{in} \cdot \mathrm{lbs}$ of mounting torque under any mounting conditions.

[^2]
MJE18008, MJF18008

PACKAGE DIMENSIONS

TO-220
CASE 221A-09
ISSUE AH

TO-220 FULLPAK
CASE 221D-03
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: INCH
2. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.617	0.635	15.67	16.12		
B	0.392	0.419	9.96	10.63		
C	0.177	0.193	4.50	4.90		
D	0.024	0.039	0.60	1.00		
F	0.116	0.129	2.95			
G	0.100		BSC	2.54		BSC
H	0.118	0.135	3.00			
J	0.018	0.025	0.43			
K	0.503	0.541	12.78	0.63		
L	0.048	0.058	1.23			
N	0.200		BSC	5.08		BSC
Q	0.122	0.138	3.10			
R	0.099	0.117	3.50			
S	0.092	0.113	2.51	2.96		
U	0.239	0.271	2.34			

STYLE 2:
PIN 1. BASE
. COLLECTOR
. EMITTER

MJE18008, MJF18008

ON Semiconductor and (11 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: 3. Pulse Test: Pulse Width $=5.0 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
 4. Proper strike and creepage distance must be provided.
[^2]: ** For more information about mounting power semiconductors see Application Note AN1040.

