life.augmented

STP23N80K5

N-channel $800 \mathrm{~V}, 0.23 \Omega$ typ., 16 A MDmesh ${ }^{\text {TM }} \mathrm{K} 5$ Power MOSFET in a TO-220 package

Datasheet - production data

Figure 1: Internal schematic diagram

NG1D2TS3Z

Features

Order code	V $_{\text {DS }}$	R$_{\text {DS(on) }}$ max.	ID	Pтот
STP23N80K5	800 V	0.28Ω	16 A	190 W

- Industry's lowest $\mathrm{R}_{\mathrm{DS}(\text { on })} \mathrm{X}$ area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications

Description

This very high voltage N -channel Power MOSFET is designed using MDmesh ${ }^{\text {TM }}$ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STP23N80K5	$23 N 80 K 5$	TO-220	Tube

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package information 9
4.1 TO-220 package information. 10
5 Revision history 12

1

Electrical ratings
Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{G S}$	Gate-source voltage	± 30	V
ID	Drain current (continuous) at $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	16	A
	Drain current (continuous) at $\mathrm{T}_{\text {case }}=10{ }^{\circ} \mathrm{C}$	10	
$\mathrm{IDM}^{(1)}$	Drain current (pulsed)	64	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	190	W
$\mathrm{dv} / \mathrm{dt}{ }^{(2)}$	Peak diode recovery voltage slope	4.5	V/ns
$\mathrm{dv} / \mathrm{dt}^{(3)}$	MOSFET dv/dt ruggedness	50	
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {j }}$	Operating junction temperature		

Notes:

${ }^{(1)}$ Pulse width is limited by safe operating area.
${ }^{(2)} I_{S D} \leq 16 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$; $\mathrm{V}_{\text {DS }}$ peak $<\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{V}_{\mathrm{DD}}=80 \% \mathrm{~V}_{\text {(BR)DSS }}$.
${ }^{(3)} \mathrm{VDS} \leq 640 \mathrm{~V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thj-case }}$	Thermal resistance junction-case	0.66	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	30	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\mathrm{AR}}{ }^{(1)}$	Avalanche current, repetitive or not repetitive	5	A
$\mathrm{E}_{\mathrm{AS}}{ }^{(2)}$	Single pulse avalanche energy	400	mJ

Notes:

${ }^{(1)}$ Pulse width limited by $\mathrm{T}_{\mathrm{jmax}}$.
${ }^{(2)}$ starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, I_{D}=I_{A R}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}$.

2 Electrical characteristics

($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5: Static

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) }{ }^{\text {dSs }}}$	Drain-source breakdown voltage	$\mathrm{VGS}=0 \mathrm{~V}, \mathrm{ld}=1 \mathrm{~mA}$	800			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=800 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{VGS}=0 \mathrm{~V}, \mathrm{~V} \mathrm{DS}=800 \mathrm{~V}, \\ & \mathrm{~T}_{\text {case }}=125^{\circ} \mathrm{C} \end{aligned}$			50	
Igss	Gate-body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{VGS}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	3	4	5	V
Rds(on)	Static drain-source onresistance	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=8 \mathrm{~A}$		0.23	0.28	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Ciss	Input capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-	1000	-	pF
Coss	Output capacitance		-	65	-	
Crss	Reverse transfer capacitance		-	1.5	-	
$\mathrm{Co}_{(\text {(tr }}{ }^{(1)}$	Equivalent output capacitance	V DS $=0$ to $640 \mathrm{~V}, \mathrm{~V}$ GS $=0 \mathrm{~V}$	-	165	-	pF
$\mathrm{Co}_{(\text {(er })^{(2)}}$	Equivalent output capacitance	V DS $=0$ to $640 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	59	-	
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{ld}=0 \mathrm{~A}$	-	4.7	-	Ω
Q_{g}	Total gate charge	$V_{D D}=640 \mathrm{~V}, I_{D}=16 \mathrm{~A},$ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see Figure 14: "Test circuit for gate charge behavior")	-	33	-	nC
$\mathrm{Qgs}_{\text {g }}$	Gate-source charge		-	6	-	
Q_{gd}	Gate-drain charge		-	25	-	

Notes:

${ }^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as Coss when $V_{D S}$ increases from 0 to 80% VDSs.
${ }^{(2)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as Coss when VDS increases from 0 to 80% VDSS

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {d}(0 n) ~}^{\text {a }}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8 \mathrm{~A}$ $\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see Figure 13: "Test circuit for resistive load switching times" and Figure 18: "Switching time waveform")	-	14	-	ns
tr	Rise time		-	9	-	
$t_{\text {d(off) }}$	Turn-off delay time		-	48	-	
$\dagger_{\text {f }}$	Fall time		-	9	-	

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain current		-		16	A
ISDM ${ }^{(1)}$	Source-drain current (pulsed)		-		64	A
$\mathrm{VSD}^{(2)}$	Forward on voltage	$\mathrm{V} \mathrm{GS}=0 \mathrm{~V}, \mathrm{ISD}=16 \mathrm{~A}$	-		1.5	V
$t_{\text {r }}$	Reverse recovery time	$\mathrm{I}_{\mathrm{SD}}=16 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, $\mathrm{V}_{\mathrm{DD}}=60 \mathrm{~V}$ (see Figure 15: "Test circuit for inductive load switching and diode recovery times')	-	410		ns
Qrr	Reverse recovery charge		-	7		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	34		A
$\mathrm{trr}_{\text {r }}$	Reverse recovery time	$\mathrm{ISD}_{\mathrm{SD}}=16 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, $\mathrm{V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	650		ns
Qrr	Reverse recovery charge		-	10		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	32		A

Notes:

${ }^{(1)}$ Pulse width is limited by safe operating area.
${ }^{(2)}$ Pulse test: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{GSO}}$	Gate-source breakdown voltage	$\mathrm{I}_{\mathrm{GS}}= \pm 1 \mathrm{~mA}, \mathrm{ID}=0 \mathrm{~A}$	± 30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Gate charge vs gate-source voltage

Figure 7: Static drain-source on-resistance

Figure 10: Normalized on-resistance vs temperature

Figure 11: Normalized V(BR)DSS vs temperature

Figure 12: Maximum avalanche energy vs temperature

3 Test circuits

Figure 17: Unclamped inductive waveform

Figure 18: Switching time waveform

AM01472v1
AM01473v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 TO-220 package information

Figure 19: TO-220 type A package outline

Table 10: T0-220 type A mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
c	0.48		0.70
D	15.25		15.75
D1			1.27
E	10		10.40
e	2.40		2.70
e1	4.95		1.32
F	1.23		6.60
H1	6.20		2.72
J1	2.40		14
L	13		3.93
L1	3.50		3.85
L20			28.90
L30			
øP	3.75		
Q	2.65		

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
06-Oct-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics - All rights reserved

