

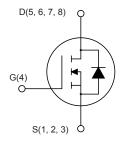
N-channel 600 V, 1.5 Ω typ., 2.2 A MDmesh II Power MOSFET in a PowerFLAT 3.3x3.3 HV package

Features

PowerFLAT 3.3x3.3 HV

Order code	V _{DS}	R _{DS(on)} max.	I _D
STL3NM60N	600 V	1.8 Ω	2.2 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance


Applications

Switching applications

Description

lectronics sales office.

This device is an N-channel Power MOSFET developed using the second generation of MDmesh technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

AM15810v1

Product status link
STL3NM60N

Product summary				
Order code STL3NM60N				
Marking	3NM60			
Package PowerFLAT 3.3x3.3 H				
Packing Tape and reel				

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	600	V
V _{GS}	Gate-source voltage	±25	V
	Drain current (continuous) at T _C = 25 °C	2.2	
L	Drain current (continuous) at T _C = 100 °C	1.7	
I _D	Drain current (continuous) at T _A = 25 °C	0.65	A
	Drain current (continuous) at T _A = 100 °C	0.5	
I _{DM} ⁽¹⁾	Drain current pulsed	2.6	Α
D	Total power dissipation at T _A = 25 °C	2	W
P _{TOT}	Total power dissipation at T _C = 25 °C	22	W
I _{AS}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _J max)	1	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	119	mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _J	Operating junction temperature range	FF to 450	°C
T _{stg}	Storage temperature range	-55 to 150	°C

^{1.} Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	5.6	°C/W
R _{thJA} ⁽¹⁾	Thermal resistance, junction-to-ambient	62.5	°C/W

1. When mounted on an 1-inch 2 FR-4, 2 Oz copper board, t < 10 s .

DS8889 - Rev 3 page 2/13

^{2.} $I_{SD} \le 2.2~A$, $di/dt \le 400~A/\mu s$, V_{DS} (peak) $\le V_{(BR)DSS}$, $V_{DD} = 80\%~V_{(BR)DSS}$.

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
I	Zono moto vielto no due in oviment	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 1 A		1.5	1.8	Ω

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

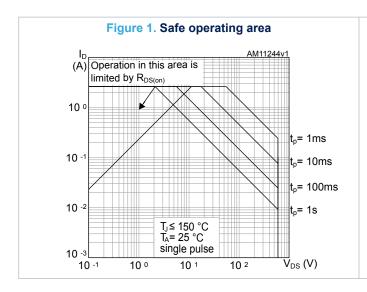
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	188	-	pF
C _{oss}	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$	-	13	-	pF
C _{rss}	Reverse transfer capacitance		-	1.1	-	pF
Coss eq. (1)	Equivalent capacitance energy related	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	100	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	6	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 2.2 A	-	9.5	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	1.6	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	5.3	-	nC

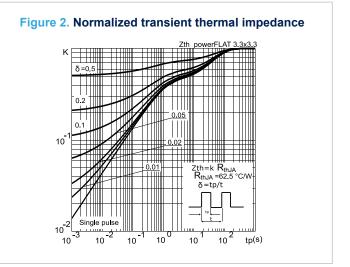
^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

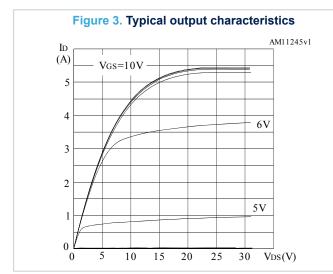
Table 5. Switching times

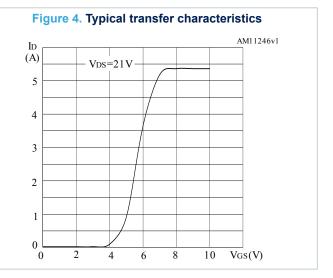
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 1.1 A,	-	8.6	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	6.2	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	20.8	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	20	-	ns

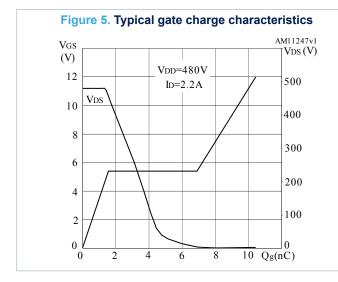
DS8889 - Rev 3 page 3/13

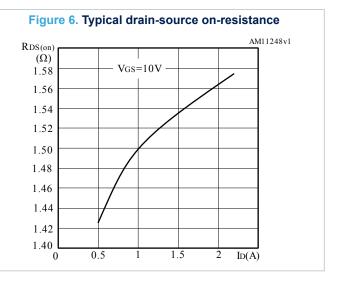

Table 6. Source-drain diode

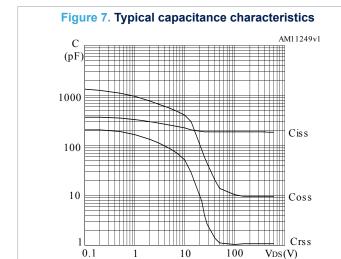

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		2.2	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		2.6	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 2.2 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 2.2 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	168		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	672		nC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	8		Α
t _{rr}	Reverse recovery time	$I_{SD} = 2.2 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	2.3		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	913		nC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	9		Α


- 1. Pulse width is limited by safe operating area.
- 2. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

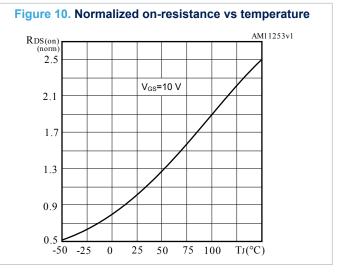


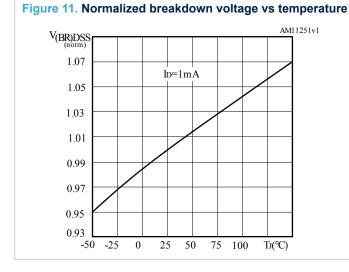

2.1 Electrical characteristics (curves)

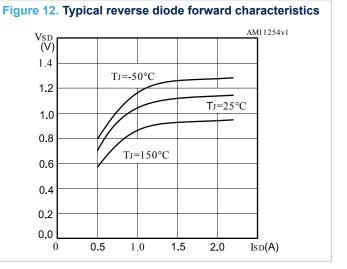




DS8889 - Rev 3 page 5/13

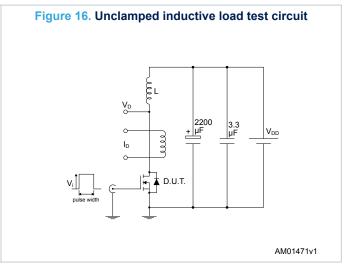


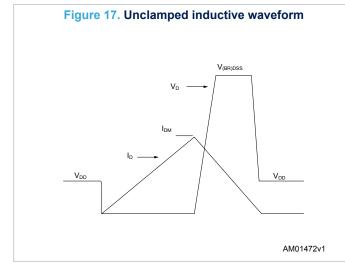

Eoss (μJ)
1.5
1.0
0.0
0 100 200 300 400 500 600 VDs(V)


Figure 9. Normalized gate threshold vs temperature

VGS(th)
(norm)
1.10
ID=250μA

0.90
0.70
-50 -25 0 25 50 75 100 Tι(°C)


DS8889 - Rev 3 page 6/13



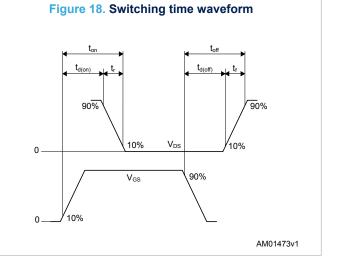
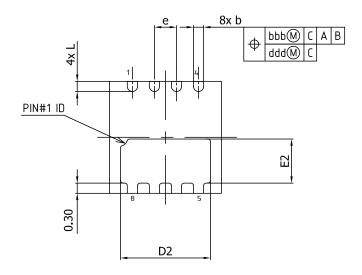

3 Test circuits

Figure 13. Test circuit for resistive load switching times

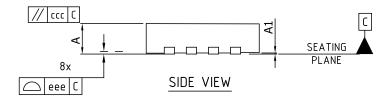
AM01468v1

DS8889 - Rev 3 page 7/13

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS8889 - Rev 3 page 8/13



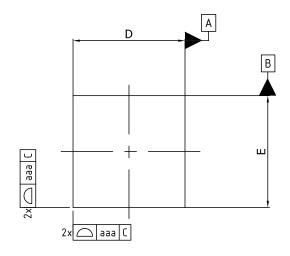

4.1 PowerFLAT 3.3x3.3 HV package information

Figure 19. PowerFLAT 3.3x3.3 HV package outline

BOTTOM VIEW

TOP VIEW

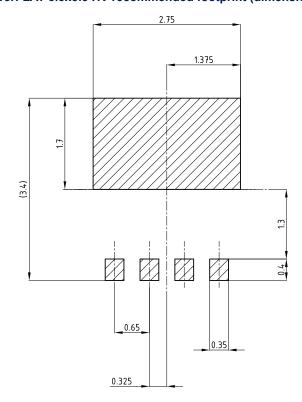

8374983_Rev_2

Table 7. PowerFLAT 3.3x3.3 HV package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	0.80	0.90	1.00
A1	0	0.02	0.05
b	0.25	0.30	0.40
D		3.30	
D2	2.50	2.65	2.75
E		3.30	
E2	1.15	1.30	1.40
е		0.65	
L	0.20	0.30	0.40
aaa		0.10	
bbb		0.10	
ccc		0.10	
ddd		0.05	
eee		0.08	

Figure 20. PowerFLAT 3.3x3.3 HV recommended footprint (dimensions are in mm)

8374983_footprint

Revision history

Table 8. Document revision history

Date	Version	Changes
12-Mar-2012	1	First release.
		Document status changed from preliminary to production data.
19-Nov-2014	2	Updated Figure 1.: Internal schematic diagram, Figure 2.: Safe operating area, Figure 3.: Thermal impedance and Figure 12.: Normalized $V_{(BR)DSS}$ vs temperature.
		Updated Table 5.: Dynamic and Table 7.: Source drain diode.
		Minor text changes.
		Modified marking on cover page
	3	Updated Figure 1. Safe operating area
26-May-2022		Modified I _{SDM} value in Table 6. Source-drain diode
		Updated Section 4.1 PowerFLAT 3.3x3.3 HV package information
		Minor text changes.

Contents

1	Elect	trical ratings	2
2	Elect	trical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	7
4	Pack	age information	8
	4.1	PowerFLAT 3.3x3.3 HV package information	9
Rev	ision	history	.11

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

DS8889 - Rev 3 page 13/13