

8 A - 800 V - 150 °C 8H Triac in D²PAK

Product status link

T835H-8G

Product summary			
I _{T(RMS)} 8 A			
V _{DRM} /V _{RRM} 800 V			
V _{DSM} /V _{RSM}	900 V		
I _{GT}	35 mA		
T _j max.	150 °C		

Features

- 8 A medium current Triac
- 800 V symmetrical blocking voltage
- 150 °C maximum junction temperature T_i
- · Three triggering quadrants
- · High noise immunity static dV/dt
- Robust dynamic turn-off commutation (dl/dt)c
- ECOPACK2 compliant component
- · Molding resin UL94-V0 flammability certified

Applications

- · General purpose AC line load control
- · AC induction and universal motor control
- Lighting and automation I/O control
- · Water heater, room heater and coffee machine
- Home automation smart AC plug
- Inrush current limiter in AC DC rectifiers

Description

Specifically designed to operate at 800 V and 150 $^{\circ}$ C, the T835H-8G Triac housed in D²PAK provides an enhanced thermal management: this 8 A Triac is the right choice for a compact drive of AC loads and enables the heatsink size reduction.

D²PAK package is ideal for compact SMD designs on surface mount boards or insulated metal substrate boards.

Based on the ST high temperature Snubberless technology, it offers higher specified turn off commutation and noise immunity levels up to the T_i max.

The T835H-8G safely optimizes the control of the hardest universal motors, heaters and inductive loads for industrial control and home appliances.

Snubberless is a trademark of STMicroelectronics.

1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

Symbol	Parameter	Value	Unit	
I _{T(RMS)}	RMS on-state current (full sine wave)	T _c = 139 °C	8	А
L	Non repetitive surge peak on-state current (full cycle,	t = 16.7 ms	84	Δ.
I _{TSM}	T _j initial = 25 °C)	t = 20 ms	80	Α
l ² t	I ² t value for fusing	t _p = 10 ms	42	A ² s
dl/dt	Critical rate of rise of on-state current, I _G = 2 x I _{GT} , tr ≤ 100 ns, f = 100 Hz	100	A/µs	
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage	800	V	
V _{DSM} /V _{RSM}	Non Repetitive peak off-state voltage t_p = 10 ms, T_j = 25 °C		900	V
I _{GM}	Peak gate current	4	Α	
P_{GM}	t_p = 20 μ s, T_j = 150 °C Maximum gate power dissipation		5	W
P _{G(AV)}	Average gate power dissipation $T_j = 150 ^{\circ}\text{C}$		1	W
T _{stg}	Storage temperature range	-40 to +150	°C	
T _j	Operating junction temperature range	-40 to +150	°C	

Table 2. Electrical characteristics (T_j = 25 °C, unless otherwise specified)

Symbol	Test conditions		Quadrants		Value	Unit	
I _{GT}	V _D = 12 V, R _I = 30 Ω		V = 42 V D = 20 O	1 - 11 - 111	Min.	5	mA
'GI	V _D = 12 V, 1\(\(\begin{array}{c} - 30 \)\(\text{2} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 - 11 - 111	Max.	35	mA	
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$		1 - 11 - 111	Max.	1.3	V	
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$ $T_j = 150 \text{ °C}$		1 - 11 - 111	Min.	0.15	V	
I.	I_L $I_G = 1.2 \times I_{GT}$	-	I - III	Max.	50	mA	
'L		II II	II	Max.	80	mA	
I _H ⁽¹⁾	I _T = 500 mA, gate open		Max.	35	mA		
dV/dt (1)	$V_D = V_R = 536 \text{ V}$, gate open		T _j = 150 °C	Min.	2000	V/µs	
(dl/dt)c (1)	Without snubber network		T _j = 150 °C	Min.	8	A/ms	

^{1.} For both polarities of A2 referenced to A1.

DS13570 - Rev 2 page 2/12

Table 3. Static characteristics

Symbol	Test conditions	Tj		Value	Unit
V _{TM} ⁽¹⁾	I _{TM} = 11 A, t _p = 380 μs	25 °C	Max.	1.50	V
V _{TO} ⁽¹⁾	Threshold voltage	150 °C	Max.	0.83	V
R _D ⁽¹⁾	Dynamic resistance	150 °C	Max.	45	mΩ
	$V_D = V_R = V_{DRM} = V_{RRM}$	25 °C Max.	1.5	μA	
I _{DRM} /I _{RRM}	AP - AB - ABW - ABW	150°C	iviax.	3.5	mA
	V _D = V _R = 400 V, peak voltage	150 °C	Max.	1.3	mA

^{1.} For both polarities of A2 referenced to A1.

Table 4. Thermal resistance

Symbo	l Parameter	Parameter			
R _{th(j-c)}	Junction to case (AC)	Max.	1.2	°C/W	
R _{th(j-a)}	Junction to ambient (S _{CU} ⁽¹⁾ = 2 cm ²)	Тур.	45	°C/W	

^{1.} Scu: copper pad surface under tab, 35 μm copper thickness on FR4 PCB.

0

1.1 Characteristics (curves)

P(W)

10

8 $\alpha = 180^{\circ}$

Figure 1. Maximum power dissipation versus on-state

Figure 3. On-state RMS current versus ambient temperature (free air convection)

 $I_{T(RMS)}(A)$

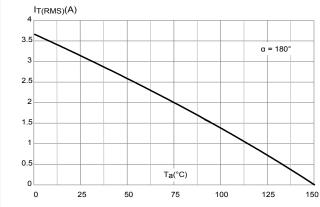


Figure 4. On-state characteristics (maximum values)

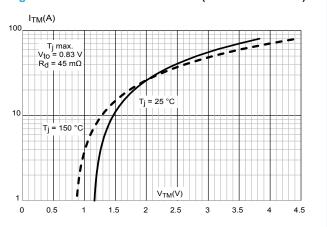


Figure 5. Relative variation of thermal impedance versus pulse duration

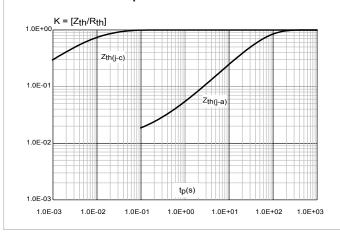
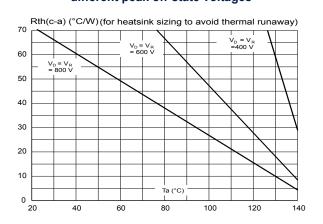



Figure 6. Recommended maximum case-to-ambient thermal resistance versus ambient temperature for different peak off-state voltages

DS13570 - Rev 2 page 4/12

Figure 7. Thermal resistance junction to ambient versus copper surface under tab

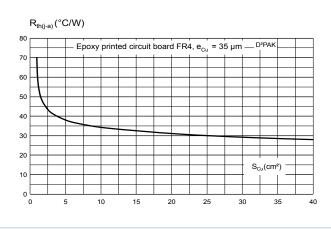


Figure 8. Relative variation of leakage current versus junction temperature for different values of blocking voltage

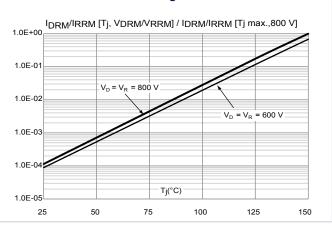


Figure 9. Relative variation of gate trigger voltage and current versus junction temperature (typical values)

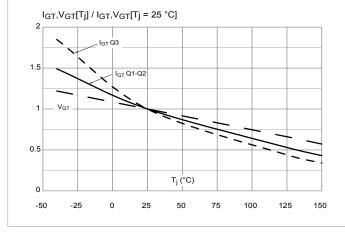


Figure 10. Relative variation of holding current and latching current versus junction temperature (typical values)

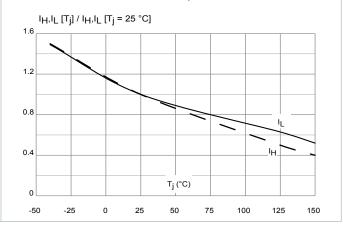


Figure 11. Surge peak on-state current versus number of cycles

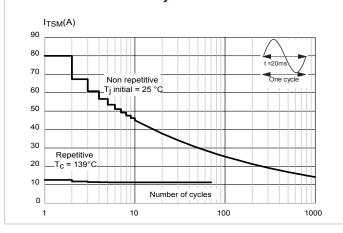
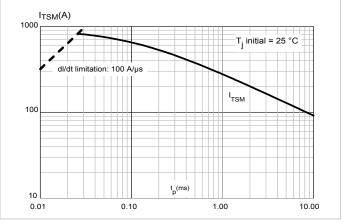



Figure 12. Non repetitive surge peak on-state current for a sinusoidal pulse with width $t_{\rm p}$ < 10 ms

DS13570 - Rev 2 page 5/12

Figure 13. Relative variation of static dV/dt immunity versus junction temperature

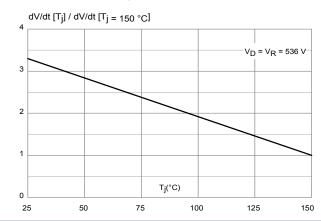
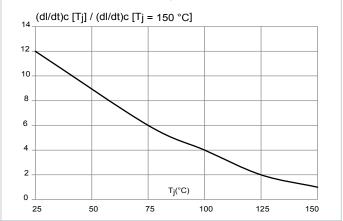



Figure 14. Relative variation of critical rate of decrease of main current versus junction temperature

DS13570 - Rev 2 page 6/12

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 D²PAK package information

- ECOPACK2 compliant
- · Lead-free package leads finishing
- Molding compound resin is halogen-free and meets UL94 flammability standard level V0

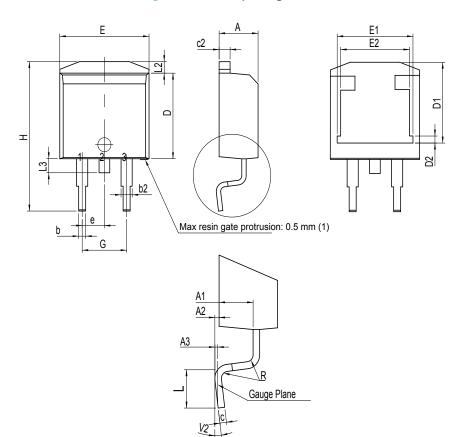


Figure 15. D²PAK package outline

(1) Resin gate is accepted in each of position shown on the drawing, or their symmetrical.

DS13570 - Rev 2 page 7/12

Table 5. D²PAK package mechanical data

		Dimensions					
Ref.		Millimeters			Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.30		4.60	0.1693		0.1811	
A1	2.49		2.69	0.0980		0.1059	
A2	0.03		0.23	0.0012		0.0091	
A3		0.25			0.0098		
b	0.70		0.93	0.0276		0.0366	
b2	1.25		1.7	0.0492		0.0669	
С	0.45		0.60	0.0177		0.0236	
c2	1.21		1.36	0.0476		0.0535	
D	8.95		9.35	0.3524		0.3681	
D1	7.50		8.00	0.2953		0.3150	
D2	1.30		1.70	0.0512		0.0669	
е	2.54			0.10000			
E	10.00		10.28	0.3937		0.4047	
E1	8.30		8.70	0.3268		0.3425	
E2	6.85		7.25	0.2697		0.2854	
G	4.88		5.28	0.1921		0.2079	
Н	15		15.85	0.5906		0.6240	
L	1.78		2.28	0.0701		0.0898	
L2	1.19		1.40	0.0468		0.0551	
L3	1.40		1.75	0.0551		0.0689	
R		0.40			0.0157		
V2 ⁽²⁾	0°		8°	0°		8°	

^{1.} Dimensions in inches are given for reference only

DS13570 - Rev 2 page 8/12

^{2.} Degrees

Figure 16. D²PAK recommended footprint (dimensions are in mm)

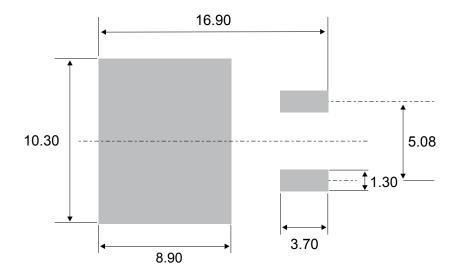
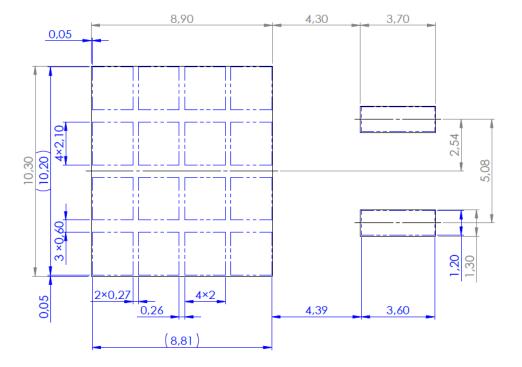
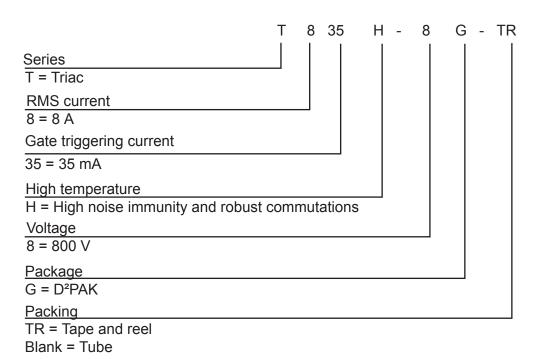



Figure 17. D²PAK stencil definitions (dimensions are in mm)



DS13570 - Rev 2 page 9/12

3 Ordering information

Figure 18. Ordering information scheme

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
T835H-8G-TR	T835H-8G	D2DAK	160	1000	Tape and reel 13"
T835H-8G	100011-00	D-PAK	D ² PAK 1.6 g	50	Tube

DS13570 - Rev 2 page 10/12

Revision history

Table 7. Document revision history

Date	Version	Changes	
20-Nov-2020	1	Initial release.	
11-Dec-2020	2	Updated general description. Inserted STPOWER logo.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS13570 - Rev 2 page 12/12