General Purpose Transistor

NPN Silicon

Features

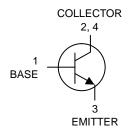
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	200	mAdc

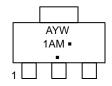
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C	P _D	1.5 12	W mW/°C
Thermal Resistance Junction–to–Ambient (Note 1)	$R_{\theta JA}$	83.3	°C/W
Thermal Resistance Junction-to-Lead #4	$R_{\theta JA}$	35	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

^{1.} FR-4 with 1 oz and 713 mm² of copper area.

ON Semiconductor®


http://onsemi.com

SOT-223 CASE 318E STYLE 1

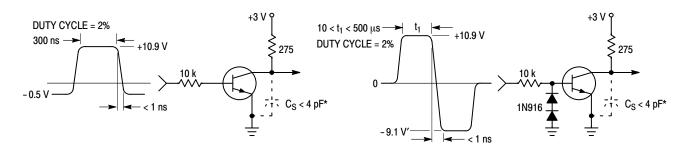
MARKING DIAGRAM

1AM = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]
PZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
SPZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Chara	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS (Note 2)		•	•	•	•
Collector – Emitter Breakdown Voltage (Note 3) (I _C = 1.0 mAdc, I _B = 0)			40	_	Vdc
Collector – Base Breakdown Voltage (I _C =	: 10 μAdc, I _E = 0)	V _{(BR)CBO}	60	-	
Emitter-Base Breakdown Voltage (I _E = 1	0 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB}	= 3.0 Vdc)	I _{BL}	-	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V	/ _{EB} = 3.0 Vdc)	I _{CEX}	-	50	
ON CHARACTERISTICS (Note 3)					
$\begin{array}{l} \text{DC Current Gain (Note 2)} \\ \text{(I}_{\text{C}} = 0.1 \text{ mAdc, V}_{\text{CE}} = 1.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} = 1.0 \text{ mAdc, V}_{\text{CE}} = 1.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} = 10 \text{ mAdc, V}_{\text{CE}} = 1.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} = 50 \text{ mAdc, V}_{\text{CE}} = 1.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} = 100 \text{ mAdc, V}_{\text{CE}} = 1.0 \text{ Vdc)} \end{array}$		H _{FE}	40 70 100 60 30	- 300 - -	-
Collector – Emitter Saturation Voltage (No (I_C = 10 mAdc, I_B = 1.0 mAdc) (I_C = 50 mAdc, I_B = 5.0 mAdc)	V _{CE(sat)}	- -	0.2 0.3	Vdc	
Base – Emitter Saturation Voltage (Note 3 ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain - Bandwidth Product (I _C =	10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} =$	0, f = 1.0 MHz)	C _{obo}	-	5.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, f = 1.0 MHz)	C _{ibo}	-	8.0	
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0	mAdc, f = 1.0 kHz)	h _{ie}	1.0	10	kΩ
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I	h _{re}	0.5	8.0	X 10 ⁻⁴	
Small – Signal Current Gain (V _{CE} = 10 Vd	h _{fe}	100	400	-	
Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1$	h _{oe}	1.0	40	μMhos	
Noise Figure ($V_{CE} = 5.0 \text{ Vdc}$, $I_{C} = 100 \mu\text{A}$	nF	-	5.0	dB	
SWITCHING CHARACTERISTICS					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc},$	t _d	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	t _r	-	35	
Storage Time	(V _{CC} = 3.0 Vdc,	t _s	-	200	
Fall Time	$I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	t _f	_	50	

- 2. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

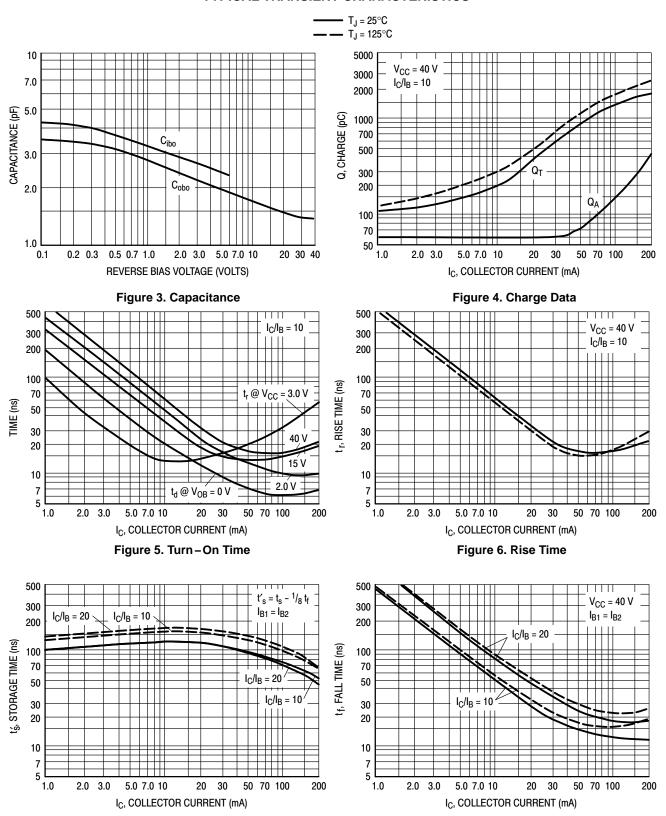
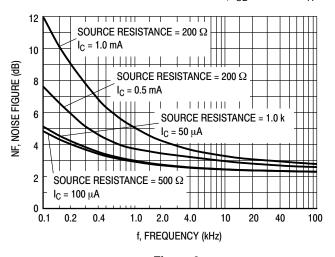



Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

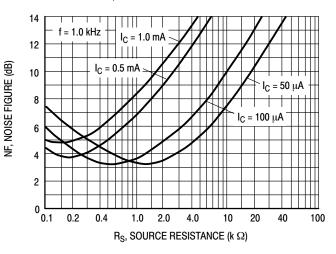
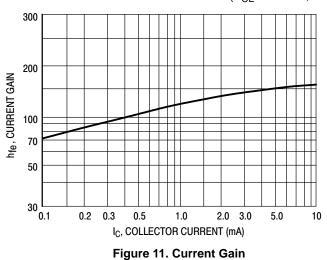



Figure 9.

Figure 10.

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

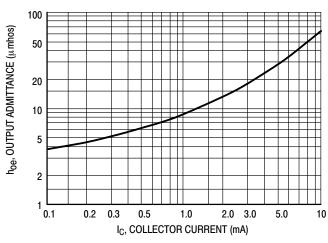


Figure 12. Output Admittance

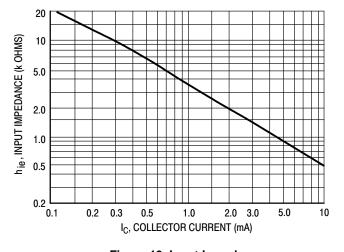


Figure 13. Input Impedance

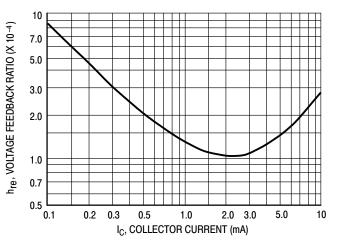


Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

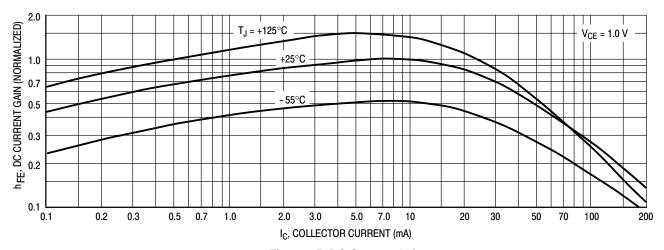


Figure 15. DC Current Gain

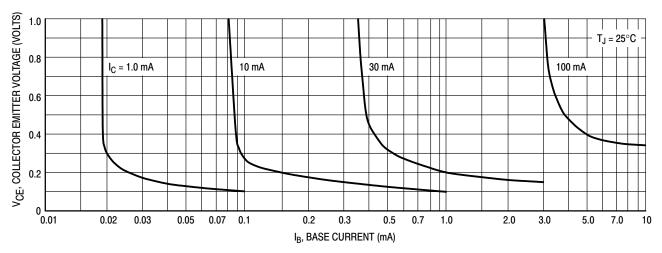


Figure 16. Collector Saturation Region

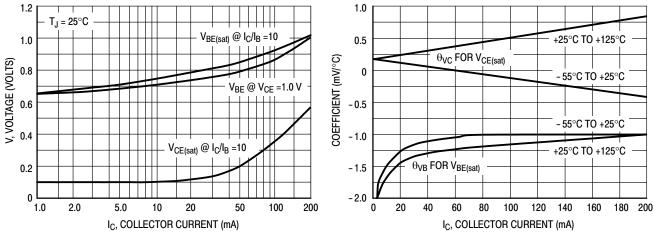
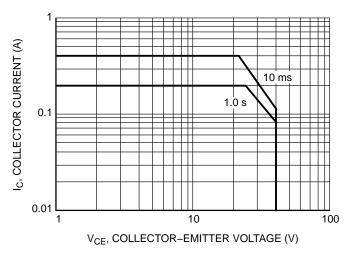
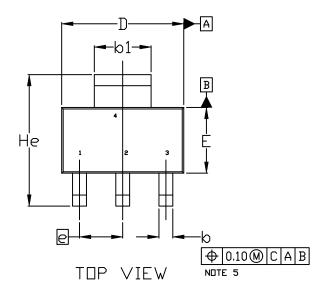
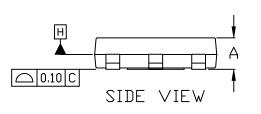


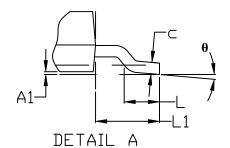
Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

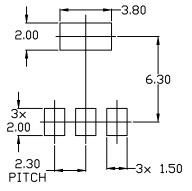
TYPICAL CHARACTERISTICS


Figure 19. Safe Operating Area


SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



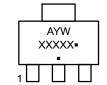
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
C	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code • Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative