
2N2369A

HIGH-SPEED SATURATED SWITCH

DESCRIPTION

The 2N2369A is a silicon planar epitaxial NPN transistor in Jedec TO-18 metal case. It is designed specifically for high-speed saturated switching applications at current levels from 100 μ A to 100 mA.

ABSOLUTE MAXIMUM RATINGS

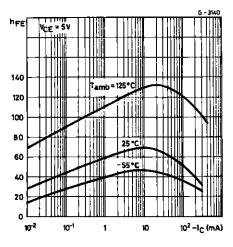
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage $(I_E = 0)$	40	V
V _{CES}	Collector-emitter Voltage ($V_{BE} = 0$)	40	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	15	V
V _{EBO}	Emitter-base Voltage $(I_C = 0)$	4.5	V
Ι _C	Collector Current	0.2	А
I _{CM}	Collector Current (10 µs pulse)	0.5	А
Ptot	Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 25$ °C at $T_{case} \le 100$ °C	0.36 1.2 0.68	W W W
T _{stg} , T _j	Storage and Junction Temperature	– 65 to 200	°C

November 1988

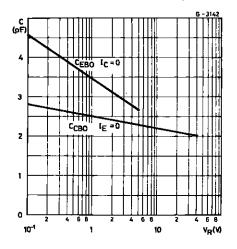
THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	146	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	486	°C/W

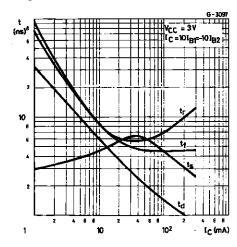
ELECTRICAL CHARACTERISTICS (T_{amb} = 25 $^{\circ}$ C unless otherwise specified)

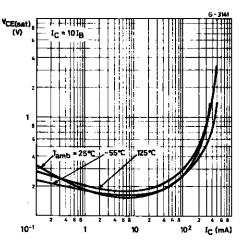

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cutoff Current (I _E = 0)	$V_{CB} = 20 V$ $T_{amb} = 150 \circ$	c		30	μA
I _{CES}	Collector Cutoff Current (V _{BE} = 0)	V _{CE} = 20 V			0.4	μA
$V_{(BR) CBO}$	Collector-base Breakdown Voltage (I _E = 0)	I _C = 10 μA	40			V
$V_{(BR)CES}$	Collector-emitter Breakdown Voltage (V _{BE} = 0)	I _C = 10 μA	40			V
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	15			V
V _{(BR) EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 10 μA	4.5			V
V _{CE} (sat)*	Collector-emitter Saturation Voltage	$ \begin{array}{ll} I_{C} = 10 \text{ mA} & I_{B} = 1 \text{ mA} \\ I_{C} = 30 \text{ mA} & I_{B} = 3 \text{ mA} \\ I_{C} = 100 \text{ mA} & I_{B} = 10 \text{ mA} \\ I_{C} = 10 \text{ mA} & I_{B} = 1 \text{ mA} \\ T_{amb} = 125 \ ^{\circ}\text{C} \end{array} $		0.14 0.17 0.28 0.19	0.2 0.25 0.5 0.3	V V V
V _{BE (sat)} *	Base-emitter Saturation Voltage	$ \begin{array}{c} I_{C} = 10 \text{ mA} & I_{B} = 1 \text{ mA} \\ I_{B} = 30 \text{ mA} & I_{B} = 3 \text{ mA} \\ I_{C} = 100 \text{ mA} & I_{B} = 10 \text{ mA} \\ I_{C} = 10 \text{ mA} & I_{B} = 1 \text{ mA} \\ T_{amb} = -55 \text{ to } 125 \ ^{\circ}\text{C} \end{array} $	0.7	0.8 0.9 1.1	0.85 1.15 1.6 1.02	V V V
h _{FE} *	DC Current Gain	$ \begin{array}{c c} I_{C} = 10 \text{ mA} & V_{CE} = 0.35 \text{ V} \\ I_{C} = 10 \text{ mA} & V_{CE} = 1 \text{ V} \\ I_{C} = 30 \text{ mA} & V_{CE} = 0.4 \text{ V} \\ I_{C} = 100 \text{ mA} & V_{CE} = 1 \text{ V} \end{array} $	40 40 30 20	63 66 71	120 120	
h _{FE} *	DC Current Gain	$I_{C} = 10 \text{ mA}$ $T_{amb} = -55 \text{ °C}$ $V_{CE} = 0.35 \text{ V}$	20	50		
f _T	Transition Frequency	$I_{C} = 10 \text{ mA}$ f = 100 MHz $V_{CE} = 10 \text{ V}$	500	675		MHz
С _{СВО}	Collector-base Capacitance	$I_{E} = 0$ f = 1 MHz $V_{CB} = 5 V$		2.3	4	pF
t _s **	Storage Time	$I_{C} = 10 \text{ mA}$ $V_{CC} = 10 \text{ V}$ $I_{B1} = -I_{B2} = 10 \text{ mA}$		6	13	ns
t _{on} **	Turn-on Time	$I_{C} = 10 \text{ mA}$ $I_{B1} = 3 \text{ mA}$ $V_{CC} = 3 \text{ V}$		9	12	ns
t _{off} **	Turn-off Time		A	13	18	ns

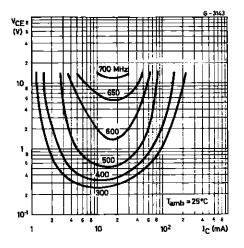
 * Pulsed : pulse duration = 300 $\mu s,$ duty cycle = 1 %.

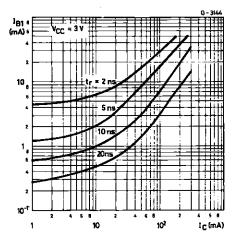


2/6

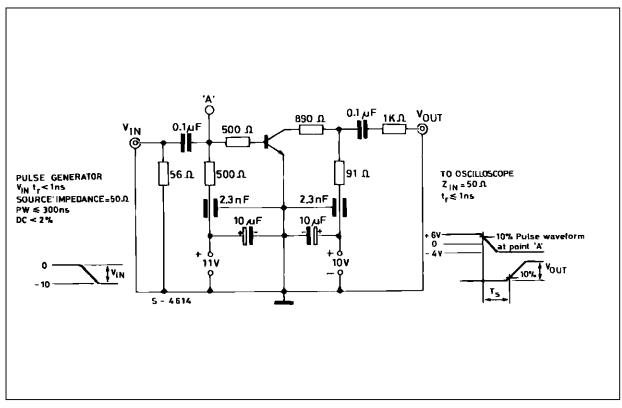

DC Current Gain.

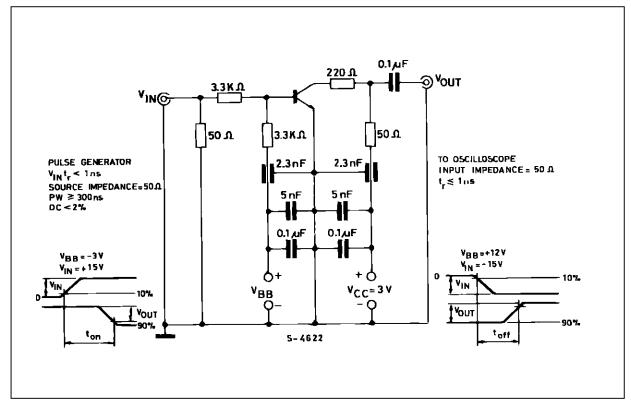

Collector-base and emitter-base capacitances.


Switching Characteristics.


Collector-emitter Saturation Voltage.

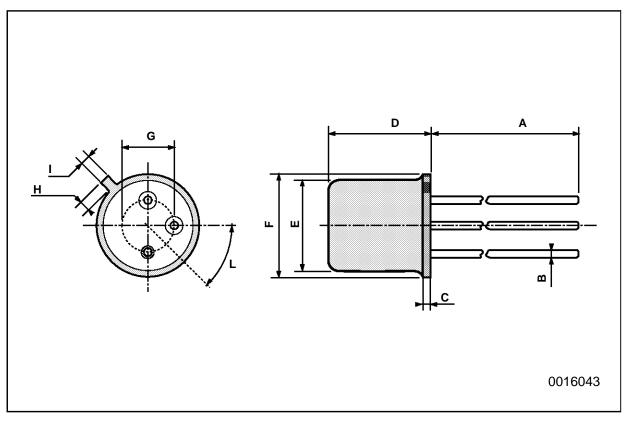
Contours of Constant Transition Frequency.


Switching Characteristics.



2N2369A

Test Circuit for ts


Test Circuit for ton, toff

TO-18 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		12.7			0.500	
В			0.49			0.019
D			5.3			0.208
E			4.9			0.193
F			5.8			0.228
G	2.54			0.100		
н			1.2			0.047
I			1.16			0.045
L	45°			45 [°]		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

> SGS-THOMSON MICROELECTRONICS

6/6