

N-channel 600 V, 280 m Ω typ., 11 A MDmesh II Power MOSFETs in a TO-220FP, I²PAK, TO-220 and IPAK packages

Product status link
STF13NM60N
STI13NM60N
STP13NM60N
STU13NM60N

Features

Order codes	V _{DS}	R _{DS(on)} max.	I _D		
STF13NM60N					
STI13NM60N	600 V	360 mΩ	11 A		
STP13NM60N	- 000 V	300 1122	500 1122	500 1122	IIA
STU13NM60N	_				

• 100% avalanche tested

- Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs developed using the second generation of MDmesh technology. These revolutionary Power MOSFETs associate a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. They are therefore suitable for the most demanding high-efficiency converters.

1 Electrical ratings

Symbol	Parameter		Value	— Unit
Symbol	Parameter	TO-220FP	I²PAK, TO-220, IPAK	
V _{DS}	Drain-source voltage		600	V
V _{GS}	Gate-source voltage		±25	V
1	Drain current (continuous) at T _C = 25 °C	11 ⁽¹⁾	11	•
Ι _D	Drain current (continuous) at T _C = 100 °C	6.9 ⁽¹⁾	6.9	— A
I _{DM} ⁽²⁾	Drain current pulsed	44(1)	44	Α
P _{TOT}	Total power dissipation at T_C = 25 °C	25 90		W
dv/dt ⁽³⁾	Peak diode recovery voltage slope		15	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)	2.5		kV
TJ	Operating junction temperature range	-55 to 150		°C
T _{stg}	Storage temperature range			°C

Table 1. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by safe operating area.

3. $I_{SD} \le 11 \text{ A}, \text{ di/dt} \le 400 \text{ A/}\mu\text{s}, V_{DD} = 80\% V_{(BR)DSS}.$

Table 2. Thermal data

Symbol Parameter			Value		Unit
Symbol	r al allietei	TO-220FP	I²PAK, TO-220	IPAK	Unit
R _{thj-case}	Thermal resistance junction-case	5 1.39			°C/W
R _{thj-a}	Thermal resistance junction-ambient	62.5		100	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AS}	Avalanche current, repetitive or not repetitive (pulse width limited by T_J max)	3.5	A
E _{AS}	Single-pulse avalanche energy (starting T_J = 25 °C, I_D = I_{AS} , V_{DD} = 50 V)	200	mJ

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V			1		
	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 600 V, T_{C} = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 5.5 A		280	360	mΩ

Table 4. Static

1. Defined by design, not subject to production test.

Table 5. Dynamic

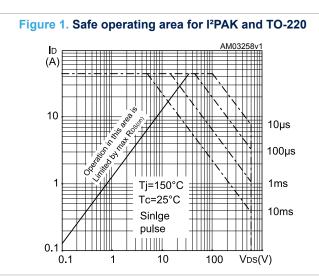
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	790	-	pF
C _{oss}	Output capacitance	V_{DS} = 50 V, f = 1 MHz, V_{GS} = 0 V	-	60	-	pF
C _{rss}	Reverse transfer capacitance	-		3.6	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	135	-	pF
Qg	Total gate charge	V_{DD} = 480 V, I_D = 11 A, V_{GS} = 0 to 10 V (see Figure 17. Test circuit for gate		27	-	nC
Q _{gs}	Gate-source charge			4	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	14	-	nC
Rg	Gate input resistance	f = 1 MHz, open drain	-	4.7	-	Ω

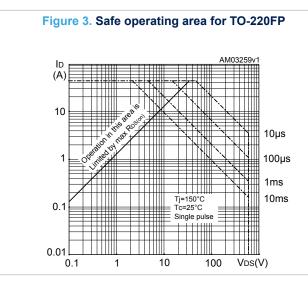
 C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Table 6. Switching times

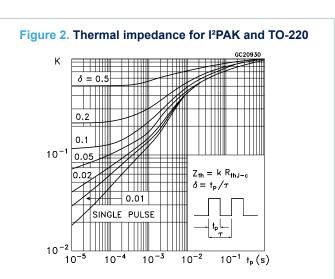
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 5.5 A,	-	3	-	ns
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V	-	8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 16. Test circuit for resistive load switching times and	-	30	-	ns
t _f	Fall time	Figure 21. Switching time waveform)	-	10	-	ns

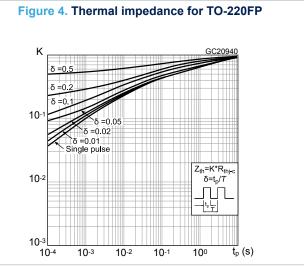
Table 7. Source-drain diode

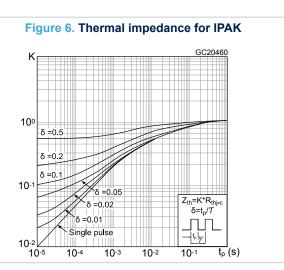

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		11	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 11 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/µs,	-	230		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V	-	2		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	18		А
t _{rr}	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/µs,	-	290		ns
Qrr	Reverse recovery charge	V _{DD} = 100 V, T _J = 150 °C	-	2.5		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	17		А

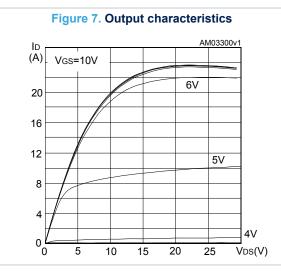

1. Pulse width is limited by safe operating area.

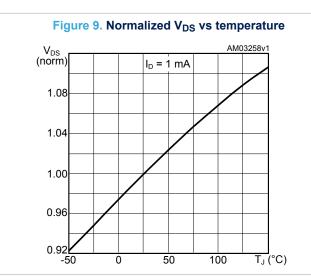

2. Pulse test: pulse duration = $300 \ \mu$ s, duty cycle 1.5%.

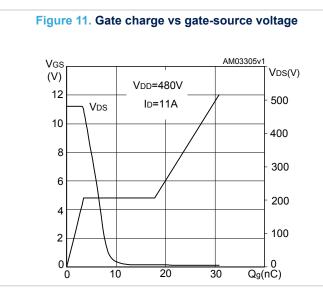


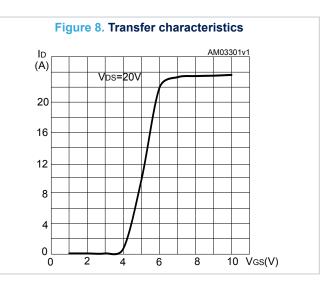
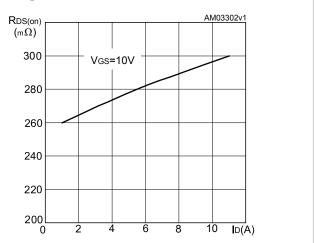
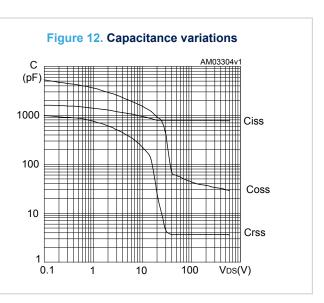
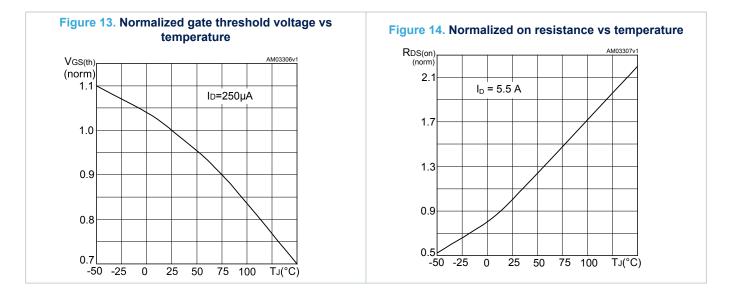

2.1 Electrical characteristics (curves)

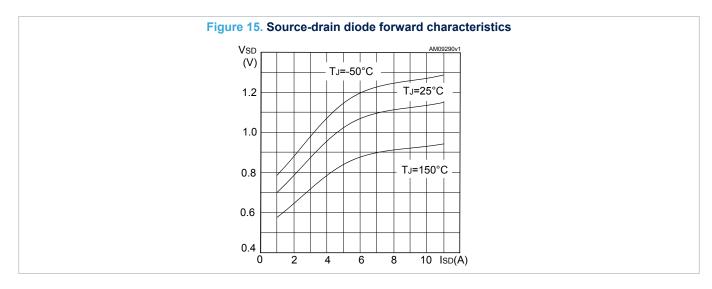


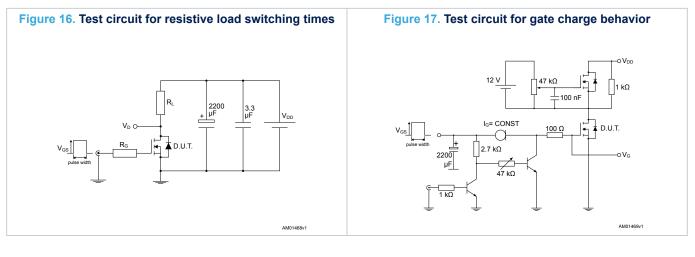


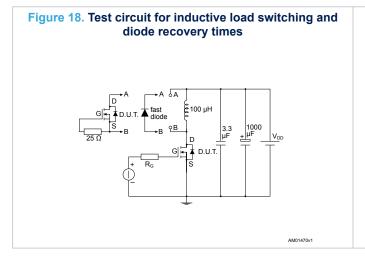


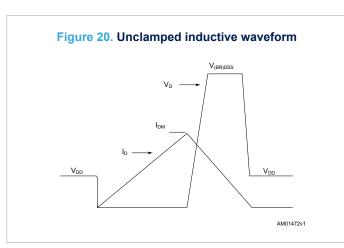


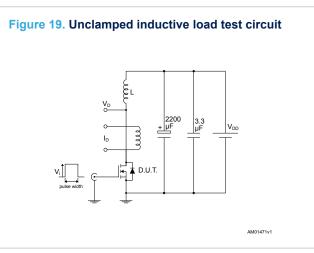





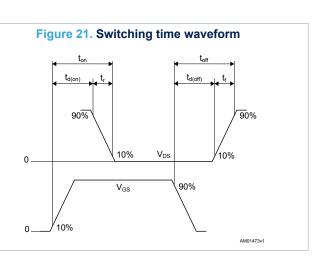

Figure 10. Static drain-source on-resistance

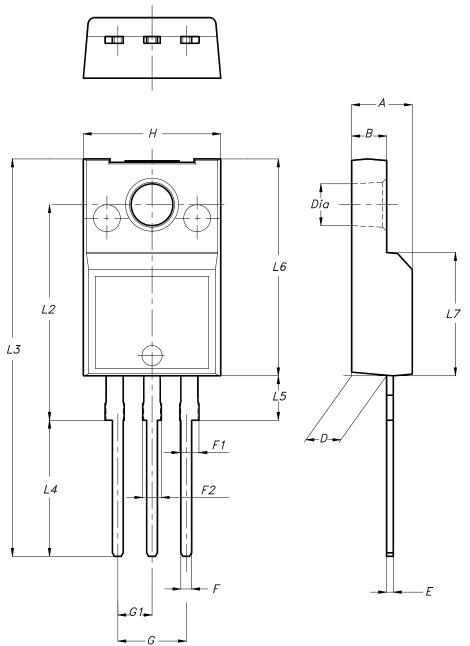









3 Test circuits

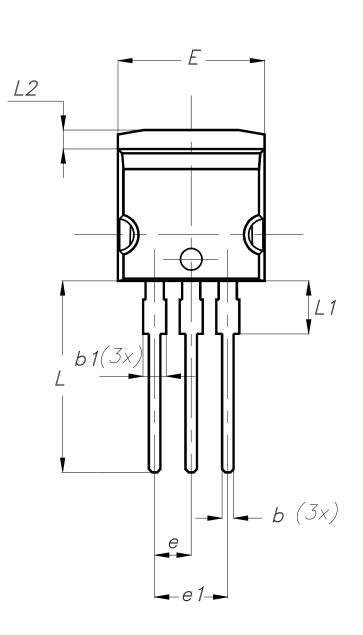


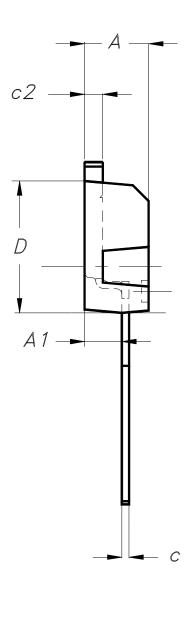
4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220FP package information

7012510_Rev_13_B

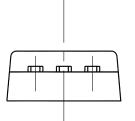

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
В	2.50		2.70
D	2.50		2.75
E	0.45		0.70
F	0.75		1.00
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.20
G1	2.40		2.70
Н	10.00		10.40
L2		16.00	
L3	28.60		30.60
L4	9.80		10.60
L5	2.90		3.60
L6	15.90		16.40
L7	9.00		9.30
Dia	3.00		3.20

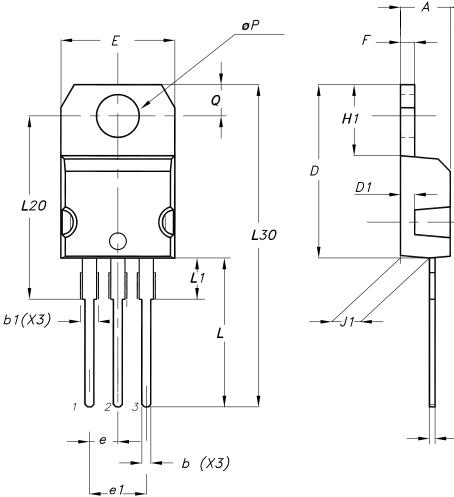

Table 8. TO-220FP package mechanical data

4.2 I²PAK package information

Figure 23. I²PAK package outline

0004982_Rev_9


Table 9. I ² PAK package mechanical dat
--

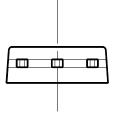

Dim.		mm	
Dini.	Min.	Тур.	Max.
A	4.40	-	4.60
A1	2.40	-	2.72
b	0.61	-	0.88
b1	1.14	-	1.70
С	0.49	-	0.70
c2	1.23	-	1.32
D	8.95	-	9.35
e	2.40	-	2.70
e1	4.95	-	5.15
Е	10.00	-	10.40
L	13.00	-	14.00
L1	3.50	-	3.93
L2	1.27	-	1.40

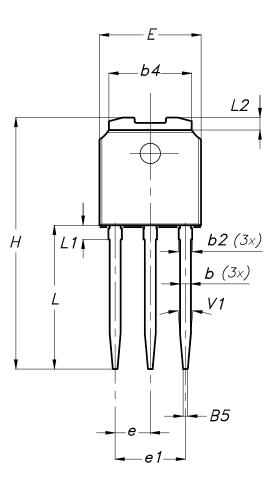
4.3 TO-220 type A package information

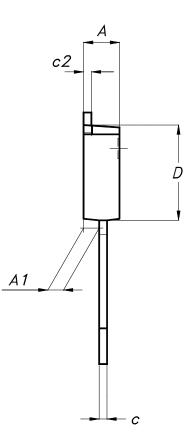
Figure 24. TO-220 type A package outline

0015988_typeA_Rev_23

С


Dim.	mm		
	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55 0.70
С	0.48		
D	15.25		15.75
D1		1.27	
E	10.00		10.40
e	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95
Slug flatness		0.03	0.10


Table 10. TO-220 type A package mechanical data



4.4 IPAK (TO-251) type A package information

Figure 25. IPAK (TO-251) type A package outline

0068771_IK_typeA_rev15

Dim.	mm		
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

Table 11. IPAK (TO-251) type A package mechanical data

5 Ordering information

Table 12. Order codes

Order codes	Marking	Package	Packing
STF13NM60N	13NM60N	TO-220FP	
STI13NM60N		I²PAK	Tube
STP13NM60N		TO-220	Tube
STU13NM60N		IPAK	

Revision history

Table 13. Document revision history

Date	Revision	Changes	
29-Feb-2009	1	First release	
13-Jan-2010	2	- Added new package, mechanical data: TO-247	
13-Jan-2010		– Added new package, mechanical data: D ² PAK	
08-Nov-2010	3	– Modified Figure 4	
		– Added new package, mechanical data: I ² PAK	
18-Jan-2012	4	– Added new package, mechanical data: IPAK	
	4	– Minor text changes	
14-Nov-2012	5	The part numbers STB13NM60N and STD13NM60N have been moved to a separate datasheet.	
		Section 4: Package mechanical data has been updated.	
	6	The part number STW13NM60N have been moved to a separate datasheet and the document has been updated accordingly.	
		Updated cover page.	
		Updated Section 1 Electrical ratings.	
26-Oct-2020		Updated Table 4. Static and Table 7. Source-drain diode.	
		Updated Section 4 Package information.	
		Added Section 5 Ordering information.	
		Minor text changes.	

Contents

1	Elect	rical ratings	2		
2	Electrical characteristics				
	2.1	Electrical characteristics (curves)	5		
3	Test	circuits	8		
4	Pack	age information	9		
	4.1	TO-220FP package information	9		
	4.2	I ² PAK package information	11		
	4.3	TO-220 type A package information	13		
	4.4	IPAK (TO-251) type A package information	15		
5	Orde	ring information	17		
Revi	ision I	nistory	18		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved