

N-channel 600 V, 0.55 Ω typ., 7.5 A MDmesh M2 Power MOSFET in a TO-220FP package

TO-220FP

Features

Order code	V _{DS} at T _{Jmax} .	R _{DS(on)} max.	l _D
STF10N60M2	650 V	0.60 Ω	7.5 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status link
STF10N60M2

Product summary				
Order code STF10N60M2				
Marking 10N60M2				
Package TO-220FP				
Packing Tube				

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V_{GS}	Gate-source voltage	±25	V	
ı (1)	Drain current (continuous) at T _C = 25 °C			
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	4.9	A	
I _{DM} ⁽²⁾	Drain current (pulsed)	30	Α	
P _{TOT}	Total power dissipation at T _C = 25 °C	25	W	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns	
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns	
V _{ISO} (5)	Insulation withstand voltage (RMS) from all three leads to external heat sink 2500		V	
T _{stg}	Storage temperature range	55 to 450		
Tj	Operating junction temperature range	-55 to 150	°C	

- 1. Limited by package.
- 2. Pulse limited by safe operating area.
- 3. $I_{SD} \le 7.5 \; A$, $di/dt \le 400 \; A/\mu s$; $V_{DS} \; peak < V_{(BR)DSS}, \; V_{DD} = 400 \; V$
- 4. $V_{DS} \le 480 \text{ V}$.
- 5. t = 1 s; $T_C = 25 \,^{\circ}\text{C}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit	
R _{thJC}	Thermal resistance, junction-to-case	5	5 °C/W	
R _{thJA}	Thermal resistance, junction-to-ambient 62.		C/VV	

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} (1)	Avalanche current, repetitive or not repetitive	1.5	Α
E _{AS} (2)	Single pulse avalanche energy		mJ

- 1. Pulse width limited by T_{jmax} .
- 2. Starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

DS9705 - Rev 5 page 2/12

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V	
	Zoro goto voltago droin ourrent	V _{GS} = 0 V, V _{DS} = 600 V			1		
IDSS	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 600 V, T_{case} = 125 °C ⁽¹⁾			100	μA	
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	٧	
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3 A		0.55	0.60	Ω	

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	400	-	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	22	-	pF
C _{rss}	Reverse transfer capacitance			0.84	-	
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V		83	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A		6.4	-	Ω
Qg	Total gate charge	V_{DD} = 480 V, I_{D} = 7.5 A, V_{GS} = 0 to 10 V (see) Figure 14. Test circuit for gate charge behavior		13.5	-	
Q _{gs}	Gate-source charge			2.1	-	nC
Q _{gd}	Gate-drain charge			7.2	-	

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			8.8	-	
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_D = 3.75 \text{ A R}_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see	-	8	-	no
t _{d(off)}	Turn-off delay time	Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	32.5	-	ns
t _f	Fall time		-	13.2	-	

DS9705 - Rev 5 page 3/12

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		7.5	Α
I _{SDM} (2)	Source-drain current (pulsed)		-		30	Α
V _{SD} (3)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 7.5 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 7.5 A, di/dt = 100 A/μs, V _{DD} = 60 V (see) Figure 15. Test circuit for inductive load switching and diode recovery times	-	270		ns
Q _{rr}	Reverse recovery charge		-	2		μC
I _{RRM}	Reverse recovery current	ulode recovery times		14.4		Α
t _{rr}	Reverse recovery time	I_{SD} = 7.5 A, di/dt = 100 A/ μ s, V_{DD} = 60 V, T_{j} = 150 °C (see) Figure 15. Test circuit for inductive load switching and diode recovery times	-	376		ns
Q _{rr}	Reverse recovery charge		-	2.8		μC
I _{RRM}	Reverse recovery current	oad switching and diode recovery times		15		Α

- 1. Limited by package.
- 2. Pulse width is limited by safe operating area.
- 3. Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.

DS9705 - Rev 5 page 4/12

2.1 Electrical characteristics curves

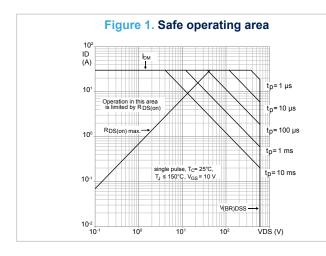
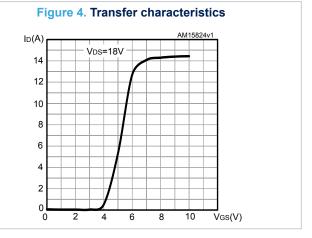
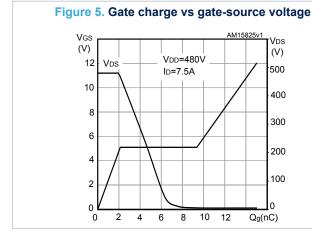
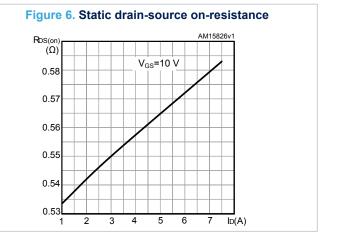





Figure 2. Maximum transient thermal impedance GADG220120211246ZTH ZthJC_F (C/W) duty = 0.5 0.4 0.3 100 0.2 0.1 0.05 10⁻¹ R_{thJC} = 5 °C/W $duty = t_{on} / T$ 10⁻² 10⁻⁶ t_p (s) 10⁻⁵ 10⁻³ 10 10

Figure 3. Output characteristics Vgs=7, 8, 9, 10V (A) 14 6V 12 10 8 6 5V 2 4V 0 10 15 5 20 V_Ds(V) 0

DS9705 - Rev 5 page 5/12

Figure 7. Capacitance variations

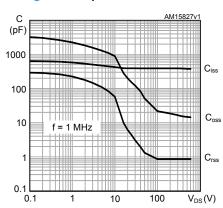


Figure 8. Normalized gate threshold voltage vs temperature

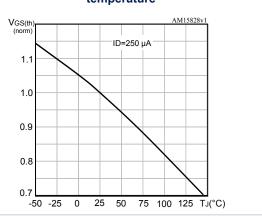


Figure 9. Normalized on-resistance vs temperature

Figure 10. Normalized $V_{(BR)DSS}$ vs temperature

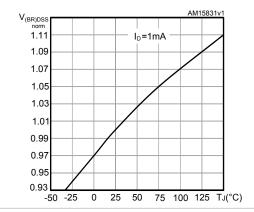
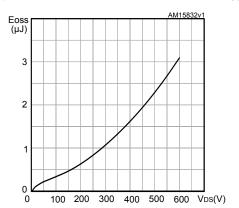



Figure 11. Source-drain diode forward characteristics

Figure 12. Output capacitance stored energy

DS9705 - Rev 5 page 6/12

3 Test circuits

Figure 13. Test circuit for resistive load switching times

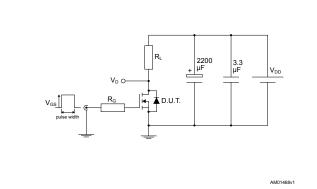


Figure 14. Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ OV₀

147 KΩ OV₀

15 CONST OV₀

16 CONST OV₀

17 KΩ OV₀

18 CONST OV₀

18 CONST OV₀

18 CONST OV₀

19 CONST OV₀

10 CO

Figure 15. Test circuit for inductive load switching and diode recovery times

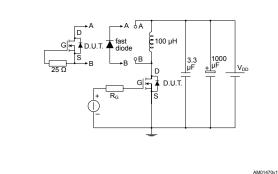


Figure 16. Unclamped inductive load test circuit

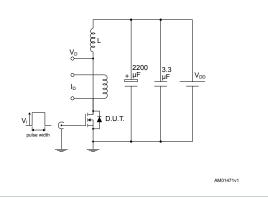


Figure 17. Unclamped inductive waveform

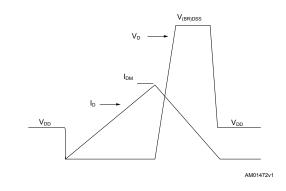
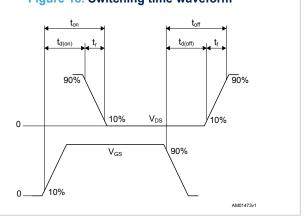
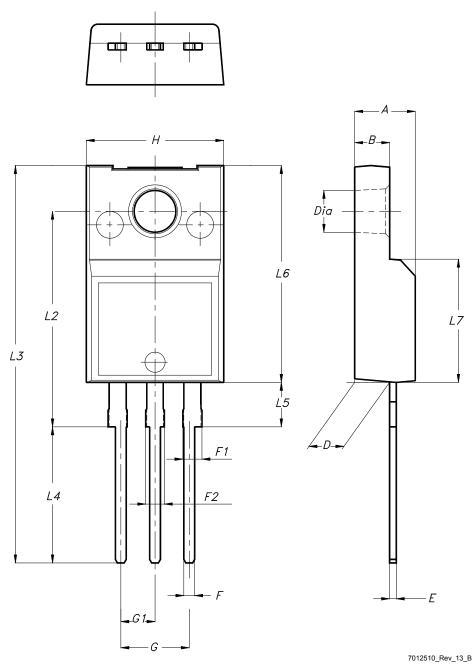



Figure 18. Switching time waveform

DS9705 - Rev 5 page 7/12



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220FP package information

Figure 19. TO-220FP package outline

DS9705 - Rev 5 page 8/12

page 9/12

Table 8. TO-220FP package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
A	4.40		4.60
В	2.50		2.70
D	2.50		2.75
E	0.45		0.70
F	0.75		1.00
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.20
G1	2.40		2.70
Н	10.00		10.40
L2		16.00	
L3	28.60		30.60
L4	9.80		10.60
L5	2.90		3.60
L6	15.90		16.40
L7	9.00		9.30
Dia	3.00		3.20

Revision history

Table 9. Document revision history

Date	Revision	Changes
29-May-2013	1	First release.
14-Oct-2013	2	Modified: R _G value in <i>Table</i> 6
14-001-2013	14-Oct-2013 2	Minor text changes
		Added: I ² PAKFP package
		- Modified: title
		– Modified: R _{DS(on)} typical values in <i>Table 5</i>
06-Dec-2013	3	– Modified: R _G value in <i>Table 6</i>
		– Modified: Figure 7 and I _D value in Figure 10
		- Added: Table 10, and Figure 21
		- Minor text changes
		The part number STFI10N60M2 has been moved to a separate datasheet and this document has been updated accordingly.
09-Mar-2017	4	Updated the title and the description in cover page.
		Updated Table 3. Avalanche characteristics.
		Minor text changes.
01-Feb-2021	5	Updated Figure 1 and Figure 2.
01-160-2021	5	Minor text changes.

Contents

1	Elect	rical ratings	2
2	Electrical characteristics		3
	2.1	Electrical characteristics curves	5
3	Test	circuits	7
4	Package information		8
	4.1	TO-220FP package information	8
Revi	ision h	nistory	.10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS9705 - Rev 5 page 12/12