

Automotive-grade silicon carbide Power MOSFET 1200 V, 12 A, 520 mΩ (typ., T_J = 150 °C) in an HiP247™ package

3

HiP247™

Product status link

SCT10N120AG

Product summary				
Order code SCT10N120AG				
Marking SCT10N120AG				
Package HiP247™				
Packing	Tube			

Features

- · Very tight variation of on-resistance vs. temperature
- Very high operating temperature capability (T_J = 200 °C)
- · Very fast and robust intrinsic body diode
- · Low capacitance

Applications

- Motor drives
- EV chargers
- High voltage DC-DC converters
- · Switch mode power supplies

Description

This silicon carbide Power MOSFET is produced exploiting the advanced, innovative properties of wide bandgap materials. This results in unsurpassed on-resistance per unit area and very good switching performance almost independent of temperature. The outstanding thermal properties of the SiC material, combined with the device's housing in the proprietary HiP247™ package, allows designers to use an industry-standard outline with significantly improved thermal capability. These features render the device perfectly suitable for high-efficiency and high power density applications.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	1200	V
V_{GS}	Gate-source voltage	-10 to 25	V
I _D	Drain current (continuous) at T _C = 25 °C	12	А
I _D	Drain current (continuous) at T _C = 100 °C	10	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	24	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	150	W
T _{stg}	Storage temperature range	-55 to 200	°C
Tj	Operating junction temperature range	-55 to 200	°C

^{1.} Pulse width limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.17	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	40	°C/W

2 Electrical characteristics

 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified}).$

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	1200			V
	Zoro goto voltogo drain	V _{DS} = 1200 V, V _{GS} = 0 V			10	μA
I _{DSS}	Zero gate voltage drain current	V_{DS} = 1200 V, V_{GS} = 0 V, T_{J} = 200 °C			100	μА
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = -10 \text{ to } 25 \text{ V}$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.8	3.5		V
	Static drain-source on- resistance	V _{GS} = 20 V, I _D = 6 A		500	690	mΩ
		V _{GS} = 20 V, I _D = 6 A,		520 580		mΩ
R _{DS(on)}		T _J = 150 °C				11122
		V _{GS} = 20 V, I _D = 6 A,				mΩ
		T _J = 200 °C				11122

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 400 V, f = 1 MHz, V _{GS} = 0 V	-	290	-	pF
C _{oss}	Output capacitance		-	30	-	pF
C _{rss}	Reverse transfer capacitance		-	9	-	pF
Qg	Total gate charge	V _{DD} = 800 V, I _D = 6 A, V _{GS} = 0 to 20 V	-	22	-	nC
Q _{gs}	Gate-source charge		-	3	-	nC
Q _{gd}	Gate-drain charge		-	10	-	nC
R _g	Gate input resistance	f=1 MHz, I _D =0 A	-	8	-	Ω

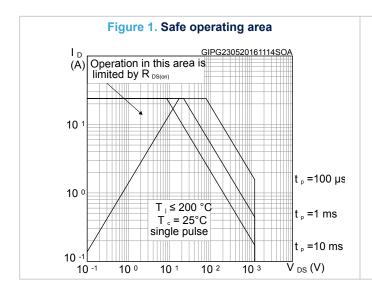
Table 5. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on}	Turn-on switching energy	V _{DD} = 800 V, I _D = 6 A	-	90	-	μJ
E _{off}	Turn-off switching energy	R_G = 10 Ω , V_{GS} = -5 to 20 V	-	30	-	μJ
E _{on}	Turn-on switching energy	V _{DD} = 800 V, I _D = 6 A	-	104	-	μJ
E _{off}	Turn-off switching energy	R_G = 10 Ω , V_{GS} = -5 to 20 V T_J = 150 °C	-	33	-	μJ

DS12509 - Rev 2 page 3/14

Table 6. Switching times

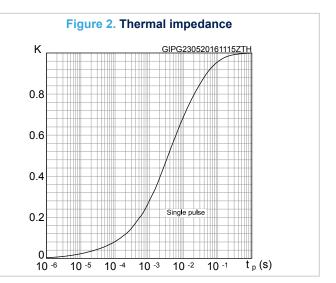
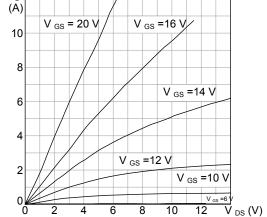
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 800 V, I_{D} = 6 A, R_{G} = 10 Ω , V_{GS} = -5 to 20 V	-	7	-	ns
t _f	Fall time		-	17	-	ns
t _{d(off)}	Turn-off delay time		-	14	-	ns
t _r	Rise time		-	12	-	ns

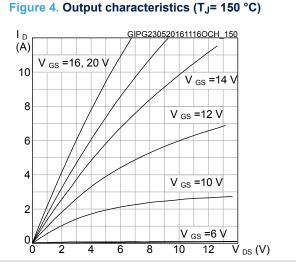

Table 7. Reverse SiC diode characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V_{SD}	Diode forward voltage	I _F = 6 A, V _{GS} = 0 V	-	4.3	-	V
t _{rr}	Reverse recovery time	I _{SD} = 6 A, di/dt = 2000 A/μs V _{DD} = 800 V, T _J =150 °C	-	16	-	ns
Q _{rr}	Reverse recovery charge		-	107	-	nC
I _{RRM}	Reverse recovery current		-	12	-	Α

DS12509 - Rev 2 page 4/14

2.1 Electrical characteristics (curves)


Figure 3. Output characteristics (T_J= 25 °C)

I_D

GIPG230520161115OCH 25

(A)

DS12509 - Rev 2 page 5/14

Figure 5. Output characteristics (T_J= 200 °C)

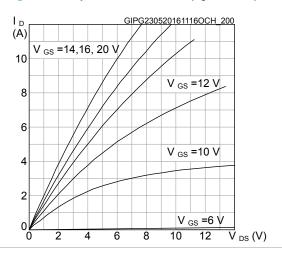


Figure 6. Transfer characteristics

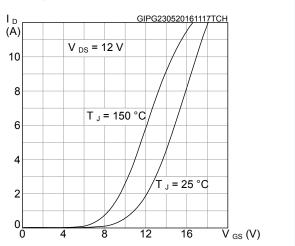


Figure 7. Power dissipation

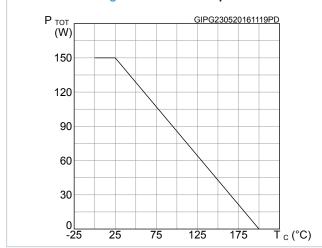


Figure 8. Gate charge vs gate-source voltage

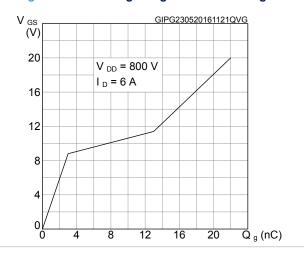


Figure 9. Capacitance variations

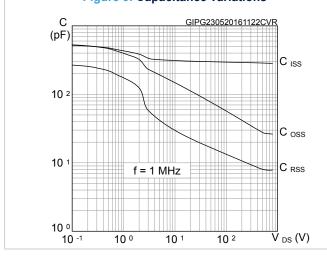
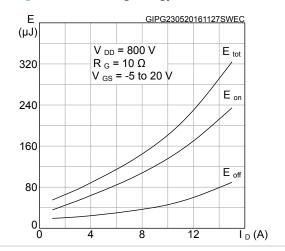



Figure 10. Switching energy vs. drain current

DS12509 - Rev 2 page 6/14

Figure 11. Switching energy vs. junction temperature

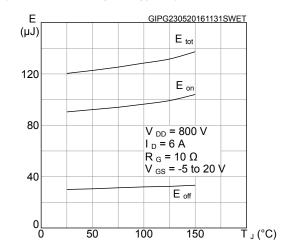


Figure 12. Normalized V_{(BR)DSS} vs. temperature

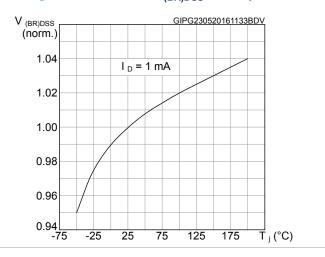


Figure 13. Normalized gate threshold voltage vs. temperature

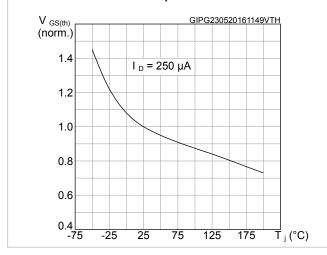


Figure 14. Normalized on-resistance vs. temperature

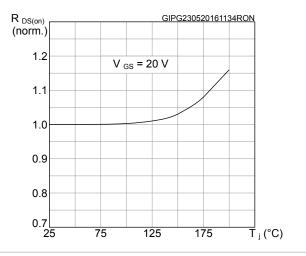


Figure 15. Body diode characteristics (T_J= -50 °C)

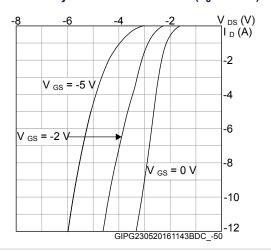
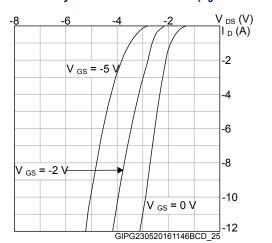



Figure 16. Body diode characteristics (T_J= 25 °C

DS12509 - Rev 2 page 7/14

Figure 17. Body diode characteristics (T_J= 150 °C)

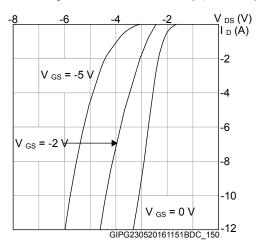


Figure 18. 3rd quadrant characteristics (T_J= -50 °C)

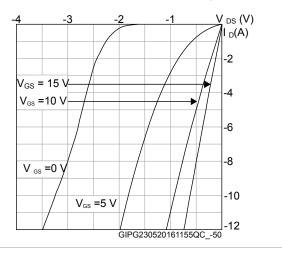


Figure 19. 3rd quadrant characteristics (T_J= 25 °C)

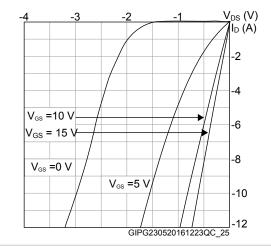
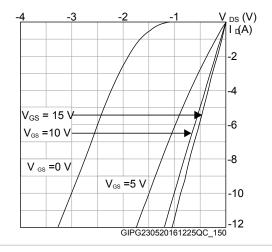



Figure 20. 3rd quadrant characteristics (T_J= 150 °C)

DS12509 - Rev 2 page 8/14

page 9/14

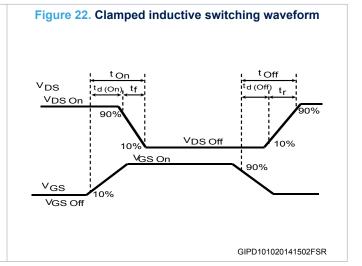
3 Test circuits

Figure 21. Switching test waveforms for transition times

RL

2200

3.3

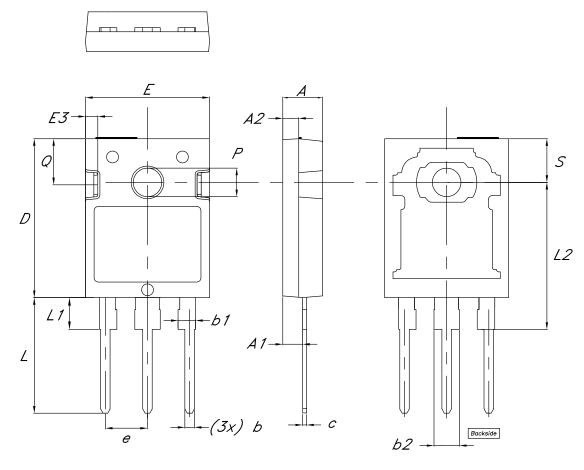

µF

VD

VD

D.U.T.

GIPD101020141511FSR



Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

HiP247 package information 4.1

Figure 23. HiP247™ package outline

8581091_2

Table 8. HiP247™ package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	4.85	5.00	5.15
A1	2.20		2.60
A2	1.90	2.00	2.10
b	1.00		1.40
b1	2.00		2.40
b2	3.00		3.40
С	0.40		0.80
D	19.85	20.00	20.15
E	15.45	15.60	15.75
E3	1.45		1.65
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2	18.30	18.50	18.70
Р	3.55		3.65
Q	5.65		5.95
S	5.30	5.50	5.70

Revision history

Table 9. Document revision history

Date	Revision	Changes
20-Mar-2018	1	First release
01-Mar-2019	2	Updated Table 3. On/off states. Updated package information.

DS12509 - Rev 2
Downloaded from Arrow.com. page 12/14

Contents

1	Electrical ratings						
2	Electrical characteristics						
	2.1	Electrical characteristics (curves)	5				
3	Test	circuits	9				
4	Pac	kage information	10				
	4.1	HiP247 package information	10				
Rev	vision	history	12				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS12509 - Rev 2 page 14/14