### **STF40N65M2**



# N-channel 650 V, 0.087 Ω typ., 32 A MDmesh™ M2 Power MOSFET in a TO-220FP package

Datasheet - production data

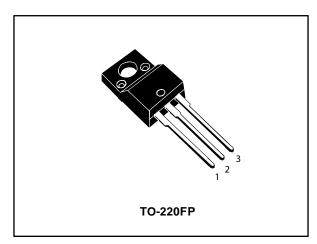
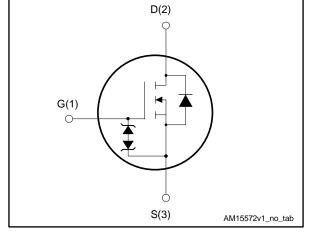




Figure 1: Internal schematic diagram



#### **Features**

| Order code | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> |
|------------|-----------------|--------------------------|----------------|
| STF40N65M2 | 650 V           | 0.099 Ω                  | 32 A           |

- Extremely low gate charge
- Excellent output capacitance (C<sub>OSS</sub>) profile
- 100% avalanche tested
- Zener-protected

### **Applications**

Switching applications

### Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

**Table 1: Device summary** 

| Order code | Marking | Package  | Packaging |
|------------|---------|----------|-----------|
| STF40N65M2 | 40N65M2 | TO-220FP | Tube      |

February 2015 DocID027442 Rev 1 1/13

Contents STF40N65M2

## **Contents**

| 1 | Electric | eal ratings                         | 3  |
|---|----------|-------------------------------------|----|
| 2 | Electric | al characteristics                  | 4  |
|   | 2.2      | Electrical characteristics (curves) | 6  |
| 3 | Test cir | cuits                               | 8  |
| 4 | Package  | e information                       | 9  |
|   | _        | TO-220FP package information        |    |
| 5 | Revisio  | n history                           | 12 |



STF40N65M2 Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                                                                              | Value          | Unit |
|--------------------------------|--------------------------------------------------------------------------------------------------------|----------------|------|
| $V_{GS}$                       | Gate-source voltage                                                                                    | ± 25           | V    |
| I <sub>D</sub> <sup>(1)</sup>  | Drain current (continuous) at T <sub>C</sub> = 25 °C                                                   | 32             | Α    |
| I <sub>D</sub> <sup>(1)</sup>  | Drain current (continuous) at T <sub>C</sub> = 100 °C                                                  | 20             | Α    |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                                                                 | 128            | А    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>C</sub> = 25 °C                                                            | 25             | W    |
| dv/dt (3)                      | Peak diode recovery voltage slope                                                                      | 15             | V/ns |
| dv/dt (4)                      | MOSFET dv/dt ruggedness                                                                                | 50             | V/ns |
| V <sub>ISO</sub>               | Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_C = 25$ °C) | 2500           | V    |
| T <sub>stg</sub>               | Storage temperature                                                                                    | - 55 to<br>150 | °C   |
| T <sub>j</sub>                 | Max. operating junction temperature                                                                    | 150            |      |

#### Notes:

Table 3: Thermal data

| Symbol                | Parameter                               | Value | Unit |
|-----------------------|-----------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case max    | 3.13  | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient max | 62.50 | °C/W |

**Table 4: Avalanche characteristics** 

| Symbol          | Parameter                                                                                   | Value | Unit |
|-----------------|---------------------------------------------------------------------------------------------|-------|------|
| I <sub>AR</sub> | Avalanche current, repetetive or not repetetive (pulse width limited by $T_{\text{jmax}}$ ) | 3     | Α    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting $T_j$ = 25 °C, $I_D$ = $I_{AR}$ , $V_{DD}$ = 50 V)  | 820   | mJ   |

<sup>&</sup>lt;sup>(1)</sup>Limited by maximum junction temperature.

 $<sup>\</sup>ensuremath{^{(2)}}\mbox{Pulse}$  width limited by safe operating area.

 $<sup>^{(3)}</sup>$   $I_{SD} \le 32$  A, di/dt  $\le 400$  A/µs;  $V_{DS~peak} < V_{(BR)DSS}, \, V_{DD} = 400$  V

<sup>&</sup>lt;sup>(4)</sup> V<sub>DS</sub> ≤ 520 V

### 2 Electrical characteristics

(T<sub>C</sub>= 25 °C unless otherwise specified)

#### Table 5: On/off states

| Symbol               | Parameter                             | Test conditions                                                           | Min. | Тур.  | Max.  | Unit     |
|----------------------|---------------------------------------|---------------------------------------------------------------------------|------|-------|-------|----------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage        | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                                | 650  |       |       | <b>V</b> |
|                      | Zero gate voltage Drain               | $V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$                            |      |       | 1     | μΑ       |
| I <sub>DSS</sub>     | current                               | $V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$<br>$T_C = 125 \text{ °C}$ |      |       | 100   | μΑ       |
| I <sub>GSS</sub>     | Gate-body leakage current             | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$                         |      |       | ±10   | μΑ       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$                                     | 2    | 3     | 4     | V        |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 16 A                             |      | 0.087 | 0.099 | Ω        |

Table 6: Dynamic

| Symbol           | Parameter                     | Test conditions                                                | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------|----------------------------------------------------------------|------|------|------|------|
| C <sub>iss</sub> | Input capacitance             |                                                                | -    | 2355 | ı    | pF   |
| Coss             | Output capacitance            | V <sub>DS</sub> = 100 V, f = 1 MHz,                            | -    | 102  | ı    | pF   |
| C <sub>rss</sub> | Reverse transfer capacitance  | $V_{GS} = 0 V$                                                 | -    | 2.7  | -    | pF   |
| Coss eq. (1)     | Equivalent output capacitance | $V_{DS} = 0 \text{ V to } 520 \text{ V}, V_{GS} = 0 \text{ V}$ | -    | 380  | -    | pF   |
| $R_{G}$          | Intrinsic gate resistance     | f = 1 MHz open drain                                           | -    | 4.5  | -    | Ω    |
| $Q_g$            | Total gate charge             | $V_{DD} = 520 \text{ V}, I_D = 32 \text{ A},$                  | -    | 56.5 | -    | nC   |
| Q <sub>gs</sub>  | Gate-source charge            | V <sub>GS</sub> = 10 V (see <i>Figure 15:</i>                  | -    | 8    | -    | nC   |
| $Q_{gd}$         | Gate-drain charge             | "Gate charge test circuit")                                    | -    | 24   | -    | nC   |

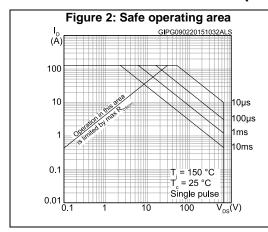
#### Notes:

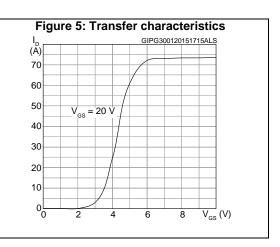


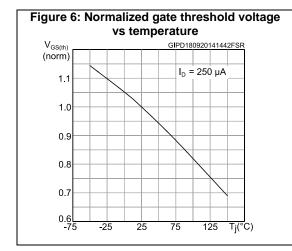
 $<sup>^{(1)}</sup>C_{oss\ eq.}$  is defined as a constant equivalent capacitance giving the same charging time as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DSS}$ 

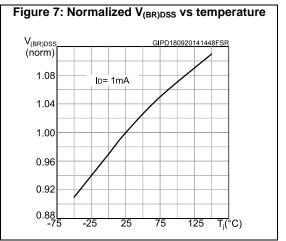
| Symbol              | Parameter           | Test conditions                                                       | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD} = 325 \text{ V}, I_D = 16 \text{ A}$                          | -    | 15   | -    | ns   |
| t <sub>r</sub>      | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$ (see Figure 14: "Switching times | -    | 10   | 1    | ns   |
| t <sub>d(off)</sub> | Turn-off-delay time | test circuit for resistive load"                                      | -    | 96.5 | -    | ns   |
| t <sub>f</sub>      | Fall time           | and Figure 19: "Switching time waveform")                             | -    | 12   | -    | ns   |

#### Table 8: Source drain diode


| Symbol                          | Parameter                     | Test conditions                                                          | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|--------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                          | -    |      | 32   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                          | -    |      | 128  | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | $V_{GS} = 0 \text{ V}, I_{SD} = 32 \text{ A}$                            | -    |      | 1.6  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 32 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$      | -    | 468  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | V <sub>DD</sub> = 60 V (see Figure 16: " Test circuit for inductive load | -    | 8.7  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | switching and diode recovery times")                                     | -    | 37.5 |      | Α    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 32 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$      | -    | 610  |      | ns   |
| Qrr                             | Reverse recovery charge       | $V_{DD}$ = 60 V, $T_j$ = 150 °C (see<br>Figure 16: " Test circuit for    | -    | 11.7 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | inductive load switching and diode recovery times")                      | -    | 39   |      | Α    |


#### Notes:


<sup>&</sup>lt;sup>(1)</sup>Pulse width is limited by safe operating area


 $<sup>^{(2)}</sup>$ Pulse test: pulse duration = 300  $\mu$ s, duty cycle 1.5%

## 2.2 Electrical characteristics (curves)









DocID027442 Rev 1

6/13

STF40N65M2 Electrical characteristics

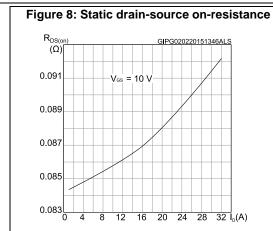


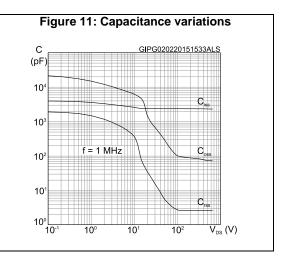

Figure 9: Normalized on-resistance vs. temperature

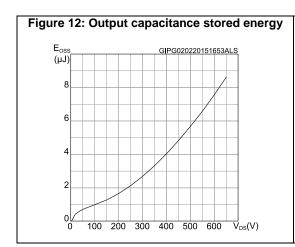
Rosion (norm)

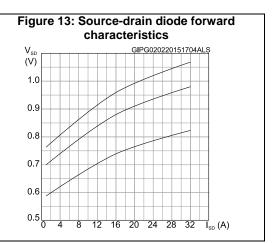
2.2 Vos = 10 V

1.8

1.4

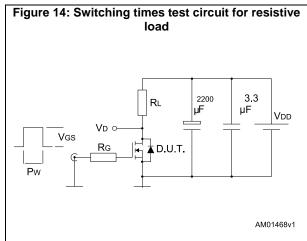

1.0

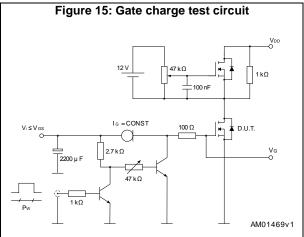

0.6

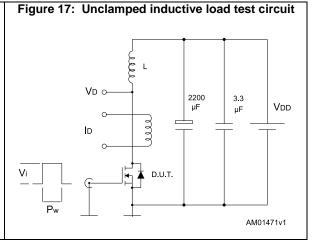

0.2

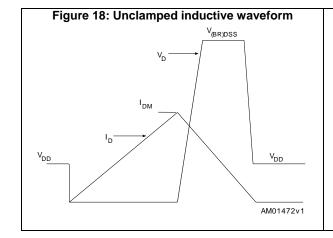
-75 -25 25 75 125 Tj(°C)

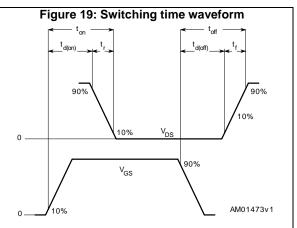
Figure 10: Gate charge vs. gate-source voltage GIPG020220151458ALS V<sub>DS</sub> (V) (V)12 600 500 10  $V_{DD} = 520 \text{ V}$  $I_{D} = 32 \text{ A}$ 400 300 6 200 100 0 60 Qg(nC) 20 30 40





Test circuits STF40N65M2


### 3 Test circuits







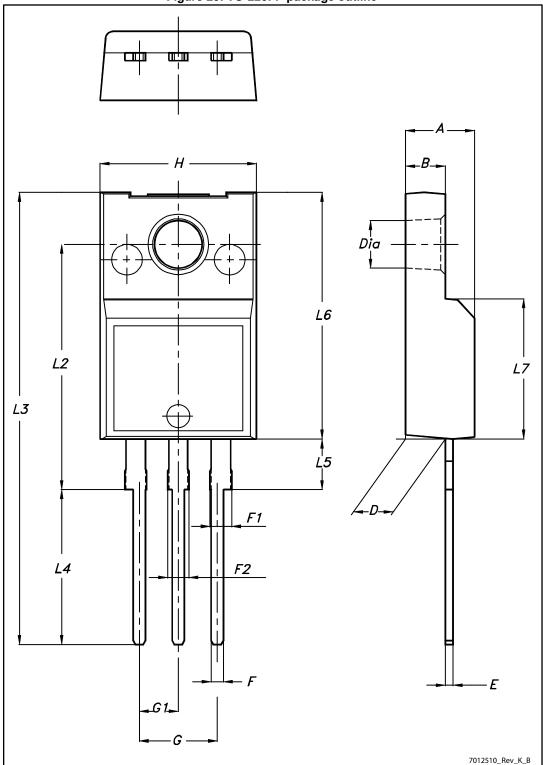




57

8/13

## 4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.



DocID027442 Rev 1 9/13

# 4.1 TO-220FP package information

Figure 20: TO-220FP package outline



577

Table 9: TO-220FP mechanical data

| Dim  |      | mm   |      |
|------|------|------|------|
| Dim. | Min. | Тур. | Max. |
| A    | 4.4  |      | 4.6  |
| В    | 2.5  |      | 2.7  |
| D    | 2.5  |      | 2.75 |
| Е    | 0.45 |      | 0.7  |
| F    | 0.75 |      | 1    |
| F1   | 1.15 |      | 1.70 |
| F2   | 1.15 |      | 1.70 |
| G    | 4.95 |      | 5.2  |
| G1   | 2.4  |      | 2.7  |
| Н    | 10   |      | 10.4 |
| L2   |      | 16   |      |
| L3   | 28.6 |      | 30.6 |
| L4   | 9.8  |      | 10.6 |
| L5   | 2.9  |      | 3.6  |
| L6   | 15.9 |      | 16.4 |
| L7   | 9    |      | 9.3  |
| Dia  | 3    |      | 3.2  |

Revision history STF40N65M2

## 5 Revision history

**Table 10: Document revision history** 

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 09-Feb-2014 | 1        | First release. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

