TURBOSWITCH ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCT CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	1 A
$\mathrm{~V}_{\text {RRM }}$	600 V
$\mathrm{t}_{\text {rr }}$ (typ)	20 ns
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.5 V

FEATURES AND BENEFITS

- SPECIFIC TO FREEWHEEL MODE OPERATIONS: FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
. HIGH FREQUENCY OPERATIONS

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diories. TURBOSWITCH family drastically cuts Iocses in both the diode and the associated ,witching IGBT and MOSFET in all freewhe? minúe operations and is particulary suitable enc tificient in motor

control freewheel applications and in booster diode applications in power factor control circuitries.
Available either in SMB or DO-15 axial package, these 600 V devices are particularly intended for use on 240 V domestic mains.

ABSOLUTE RATIN־®s (limiting values)

Symbr!	Parameter		Value	Unit
IRFM	Repetitive peak reverse voltage		600	V
IF(RMS)	RMS forward current		6	A
Ifrk	Repetitive peak forward current	$\begin{aligned} & \mathrm{tp}=5 \mu \mathrm{~s} \\ & \mathrm{~F}=5 \mathrm{kHz} \text { square } \end{aligned}$	10	A
$\mathrm{I}_{\text {FSM }}$	Surge non repetitive forward current	$\mathrm{tp}=10 \mathrm{~ms}$ sinusoidal	25	A
T_{j}	Maximum operating junction temperature		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

TM : TURBOSWITCH is a trademark of STMicroelectronics

THERMAL AND POWER DATA

Symbol	Parameter	Test conditions		Value	Unit
$\mathrm{R}_{\text {th(}}^{\text {(}-1)}$	Junction to lead		SMB	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Junction to lead L=5mm		DO-15	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{1}	Conduction power dissipation	$\begin{aligned} & \mathrm{I}_{\mathrm{F}(\mathrm{AV})}=0.8 \mathrm{~A} \quad \delta=0.5 \\ & \mathrm{Tlead}=93^{\circ} \mathrm{C} \end{aligned}$	SMB	1.4	W
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}(\mathrm{AV})}=0.8 \mathrm{~A} \quad \delta=0.5 \\ & \text { Tlead }=60^{\circ} \mathrm{C} \end{aligned}$	DO-15	1.4	W
$\mathrm{P}_{\text {max }}$	Total power dissipation$\begin{aligned} & P m a x=P 1+P 3 \\ & (P 3=10 \% P 1) \end{aligned}$	Tlead $=90^{\circ} \mathrm{C}$	SMB	1.5	W
		Tlead $=60^{\circ} \mathrm{C}$	DO-15	1.5	W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test conditions		Min	Typ	Max	Unit
V_{F} *	Forward voltage drop	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		1.1	$\begin{aligned} & \hline 1.75 \\ & 1.5 \\ & \hline \end{aligned}$	V
$\mathrm{I}_{\mathrm{R} * *}$	Reverse leakage current	$\begin{aligned} & \hline V_{R}=0.8 x \\ & V_{\text {RRM }} \end{aligned}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$		250	$\begin{aligned} & 10 \\ & 750 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {to }}$	Threshold voltage	$\mathrm{lp}<3 . \mathrm{IF}(\mathrm{AV})$	$\mathrm{Tj}=125^{\circ} \mathrm{C}$		\bigcirc	1.15	V
Rd	Dynamic resistance					350	$\mathrm{m} \Omega$

Test pulse: $\quad * t p=380 \mu \mathrm{~s}, \delta<2 \%$
** tp = $5 \mathrm{~ms}, \delta<2 \%$
To evaluate the maximum conduction losses use the following equation :
$\mathrm{P}=\mathrm{V}_{\mathrm{to}} \times \mathrm{IF}(\mathrm{AV})+\mathrm{Rd} \times \mathrm{IF}^{2}(\mathrm{RMS})$

DYNAMIC ELECTRICAL CHARACTERISTICS TURN-OFF SWITCHING

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$t_{\text {rr }}$	Reverse recovery time	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{Irr}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~d} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{~V}_{\mathrm{R}}= \\ & 30 \mathrm{~V} \end{aligned}$		20	50	ns
$I_{R M}$	Maximum recovery current	$\begin{aligned} & \begin{array}{l} \mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{VR}=400 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=-8 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \end{array} \\ & \hline \end{aligned}$		1.6	0.6	A
S factor	Softness factor	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$		1.1		1

TURN-ON SWITCHING

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
tfr	Forward recovery time	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=8 \mathrm{~A} / \mu \mathrm{s} \\ & \text { measured at } 1.1 \times \mathrm{V}_{\mathrm{F}} \max \end{aligned}$			500	ns
$V_{F p}$	Peak forward voltage				10	V

Fig. 1: Conduction losses versus average current.

Fig. 3: Peak reverse recovery current versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (90\% confidence).

Fig. 5: Softness factor (tb/ta) versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values).

Fig. 2: Forward voltage drop versus forward current (maximum values).

IFM(A)

Fig. 4: Reverse recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}(90 \%$ confidence).

Fig. 6: Relative variation of dynamic parameters versus junction temperature (reference $\mathrm{Tj}=125^{\circ} \mathrm{C}$). (Reference: $\mathrm{Tj}=125^{\circ} \mathrm{C}$)

Fig. 7: Transient peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (90% confidence).

Fig. 8: Forward recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}(90 \%$ confidence).

Fig. 9: Junction capacitance versus reverse voltage applied (typical values).

APPLICATION DATA

The TURBOSWITCH ${ }^{\text {TM }}$ is especially designed to provide the lowest overall power losses in any "Freewhell Mode" application (see fig. A) considering both diode and companion transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

Fig. A : "FREEWHEEL" MODE

APPLICATION DATA (Cont'd)

Fig. B : STATIC CHARACTERISTICS

Fig. C : TURN-OFF CHARACTERISTICS

Conduction losses:

$\mathrm{P} 1=\mathrm{V}_{\text {to }} \times \operatorname{IF}(\mathrm{AV})+\mathrm{R}_{\mathrm{d}} \times \mathrm{IF}^{2}(\mathrm{RMS})$

Reverse losses:
$P 2=V_{R} \times \operatorname{IR} \times(1-\delta)$

Turn-on losses:
(in the transistor, due to the diode)

$$
\begin{aligned}
P 5 & =\frac{V_{R} \times I_{R M} \times(3+2 \times S) \times F}{6 \times d I_{F} / d t} \\
& +\frac{V_{R} \times I_{R M} \times I_{L} \times(S+2) \times F}{2 \times d I_{F} / d t}
\end{aligned}
$$

Turn-off losses (in the diode) :

$$
\mathrm{P} 3=\frac{V_{R} \times I_{R M^{2}} \times S \times F}{6 \times d I_{F} / d t}
$$

P3 and P5 are suitable for power MOSFET and IGBT

APPLICATION DATA (Cont'd)

Fig. D: TURN-ON CHARACTERISTICS

Turn-on losses :
P4 = 0.4 (VFP - V_{F}) \times IFmax $\times \operatorname{tr} \times \mathrm{F}$

PACKAGE MECHANICAL DATA
SMB

REF.	DIMENSIONS			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.075	0.096
A2	0.05	0.20	0.002	0.008
b	1.95	2.20	0.077	0.087
c	0.15	0.41	0.006	0.016
E	5.10	5.60	0.201	0.220
E1	4.05	4.60	0.159	0.181
D	3.30	3.95	0.130	0.156
L	0.75	1.60	0.030	0.063

FOOTPRINT DIMENSIONS (in millimeters)

PACKAGE MECHANICAL DATA

DO-15

REF.	DIMENSIONS			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	6.05	6.75	0.238	0.266
B	2.95	3.53	0.116	0.139
C	26	31	1.024	1.220
D	0.71	0.88	0.028	0.035

MARKING

Type	Marking	Package	Weight	Base Qty	Delivery mode
STTA106U	T01	SMB	0.1 g	2500	tape \& reel
STTA106	STTA106	DO- 15	0.4 g	1000	Ammopack
STTA106RL	STTA106	DO-15	0.4 g	6000	tape \& reel

- Band indicates cathode
- Epoxy meets UL94,Vo

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

