

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

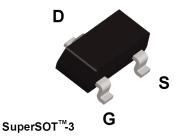
October 2015

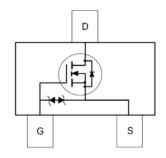
FDN86501LZ

N-Channel Shielded Gate PowerTrench® MOSFET 60 V, 2.6 A, 116 m Ω

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)}$ = 116 m Ω at V_{GS} = 10 V, I_D = 2.6 A
- Max $r_{DS(on)}$ = 173 m Ω at V_{GS} = 4.5 V, I_D = 2.1 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench® process that incorporates Shielded Gate technology. This process has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- Primary DC-DC Switch
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

Symbol	Parameter		Ratings	Units	
V_{DS}	Drain to Source Voltage		60	V	
V_{GS}	Gate to Source Voltage		±20	V	
	-Continuous	(Note 1a)	2.6		
'D	-Pulsed	(Note 4)	24	Α	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	6	mJ	
В	Power Dissipation	(Note 1a)	1.5	W	
P_{D}	Power Dissipation	(Note 1b)	0.6	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	80	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8650	FDN86501LZ	SSOT-3	7 "	8 mm	3000 units

©2015 Fairchild Semiconductor Corporation FDN86501LZ Rev.1.1

Electrical Characteristics T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	cteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25 °C		68		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ

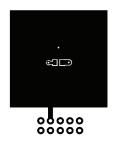
On Characteristics (Note 2)

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.0	1.9	2.4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-5		mV/°C
		V _{GS} = 10 V, I _D = 2.6 A		89	116	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 2.1 \text{ A}$		121	173	mΩ
, ,		V_{GS} = 10 V, I_D = 2.6 A, T_J = 125 °C		152	198	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 2.6 A		8		S

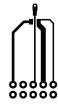
Dynamic Characteristics

C _{iss}	Input Capacitance	V - 20 V V - 0 V		236	335	pF
C _{oss}	Output Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz		77	110	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12		4.9	10	pF
R_q	Gate Resistance		0.1	8.0	2.0	Ω

Switching Characteristics


t _{d(on)}	Turn-On Delay Time		4.4	10	ns
t _r	Rise Time	V _{DD} = 30 V, I _D = 2.6 A,	1.2	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	9.6	20	ns
t _f	Fall Time		1.2	10	ns
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V	3.8	5.4	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V} V_{DD} = 30 \text{ V},$	1.9	2.7	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 2.6 A	0.7		nC
Q _{gd}	Gate to Drain "Miller" Charge		0.6		nC

Drain-Source Diode Characteristics


V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.6 A (Note 2)	0.9	1.3	V
t _{rr}	Reverse Recovery Time	I _F = 2.6 A, di/dt = 100 A/μs	31	50	ns
Q_{rr}	Reverse Recovery Charge		19	31	nC

Notes:

^{1.} R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 180 °C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 6 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 2 A, V_{DD} = 60 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 9 A.
- 4. Pulsed Id please refer to Fig 11 SOA graph for more details.

Typical Characteristics T_J = 25 °C unless otherwise noted.

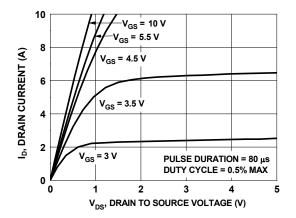


Figure 1. On Region Characteristics

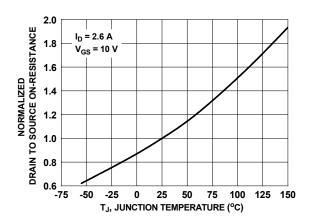


Figure 3. Normalized On Resistance vs. Junction Temperature

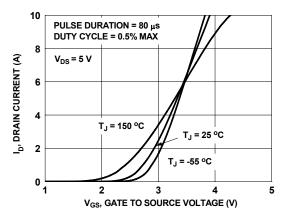


Figure 5. Transfer Characteristics

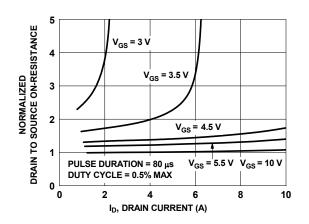


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

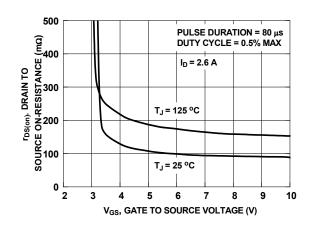


Figure 4. On-Resistance vs. Gate to Source Voltage

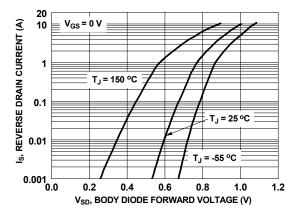


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics T_J = 25 °C unless otherwise noted.

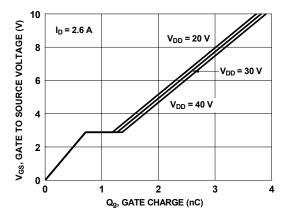


Figure 7. Gate Charge Characteristics

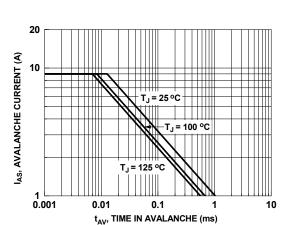


Figure 9. Unclamped Inductive Switching Capability

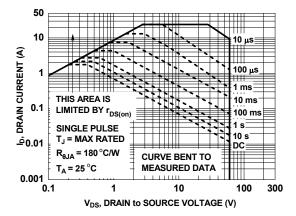


Figure 11. Forward Bias Safe Operating Area

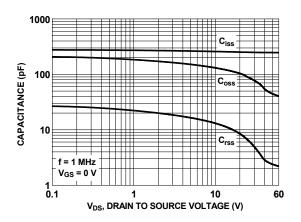


Figure 8. Capacitance vs. Drain to Source Voltage

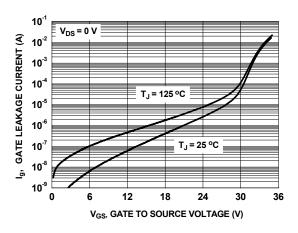


Figure 10. Gate Leakage Current vs. Gate to Source Voltage

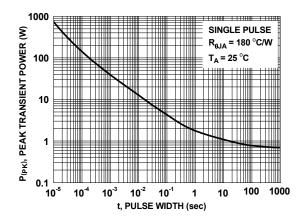


Figure 12. Single Pulse Maximum Power Dissipation

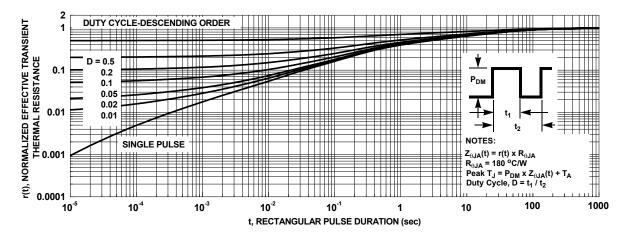
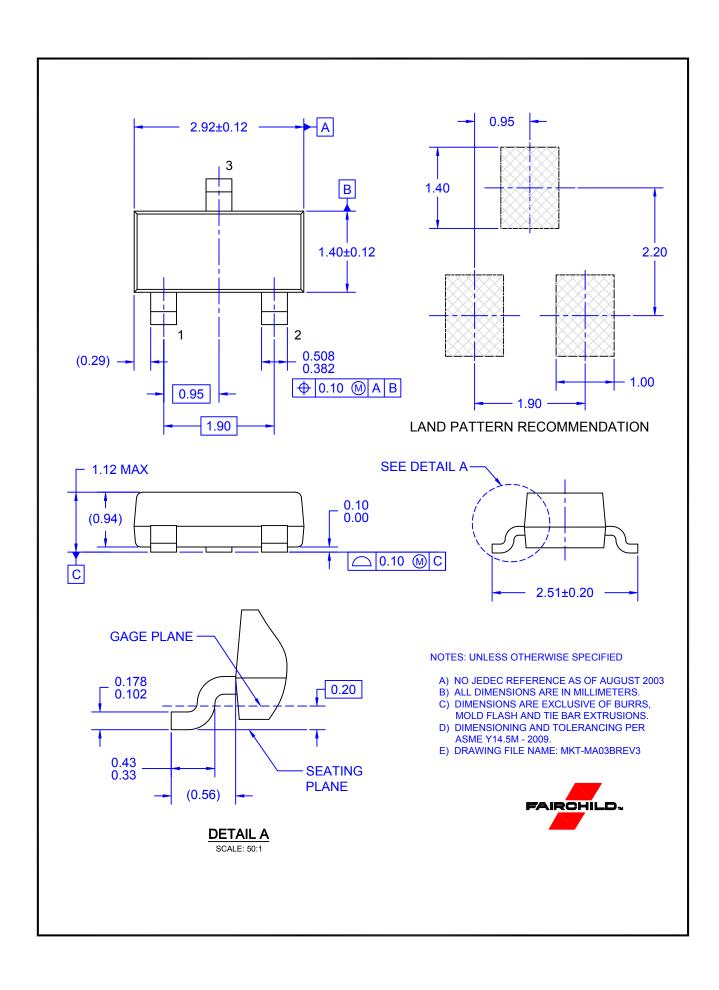



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative