MOSFET - N-Channel Shielded Gate PowerTrench® 150 V, 15 mΩ, 61.3 A

NVDS015N15MC

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 15 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 29 \text{ A}$
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

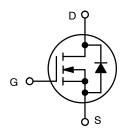
Typical Applications

- Primary Side for 48 V Isolated Bus
- SR for MV Secondary Applications

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

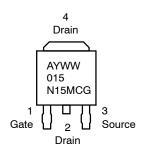
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	150	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	61.3	Α
Current R _{0JC} (Note 2)	Steady	T _C = 100°C		43.4	
Power Dissipation	State	T _C = 25°C	P_{D}	107.1	W
R _{θJC} (Note 2)		T _C = 100°C		53.6	
Continuous Drain		T _A = 25°C	I _D	10.5	Α
Current R _{θJA} (Notes 1, 2)	Steady	T _A = 100°C		7.4	
Power Dissipation	State	T _A = 25°C	P_{D}	3.1	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	382	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	89.3	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 4.4 A)			E _{AS}	1301	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	15 mΩ @ 10 V	61.3 A

N-CHANNEL MOSFET

MARKING DIAGRAM

015N15MCG = Specific Device Code

= Assembly Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NVDS015N15MCT4G	DPAK (Pb-Free)	2500 / Tube

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	47.9	

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		150			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref	to 25°C		83		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	
		V _{DS} = 120 V	T _J = 125°C		1.1		μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 162 μΑ	2.5		4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 162 μA, ref	f to 25°C		-8.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	₀ = 29 A		11.8	15	mΩ
Forward Transconductance	9FS	V _{DS} = 10 V, I _D	= 29 A		58		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V			2120		pF
Output Capacitance	C _{OSS}				595		
Reverse Transfer Capacitance	C _{RSS}				10.5		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 75 V; I _D = 29 A			27		nC
Threshold Gate Charge	Q _{G(TH)}				7		
Gate-to-Source Charge	Q_{GS}				11		
Gate-to-Drain Charge	Q_{GD}				4		
Plateau Voltage	V_{GP}				5.5		V
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				16		
Rise Time	t _r	V _{GS} = 10 V, V _{DE}	n = 75 V,		5		1
Turn-Off Delay Time	t _{d(OFF)}	I_D = 29 A, R_G = 6 Ω			21		ns -
Fall Time	t _f				4		
DRAIN-SOURCE DIODE CHARACTERISTIC	s						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 29 A	T _J = 25°C		0.89	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD}	n = 75 V		49		ns
Reverse Recovery Charge	Q _{RR}	$dl_S/dt = 300 \text{ A/}\mu\text{s}, l_S = 29 \text{ A}$			197		nC
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD}	n = 75 V		34		ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs, l _S = 29 A			345		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

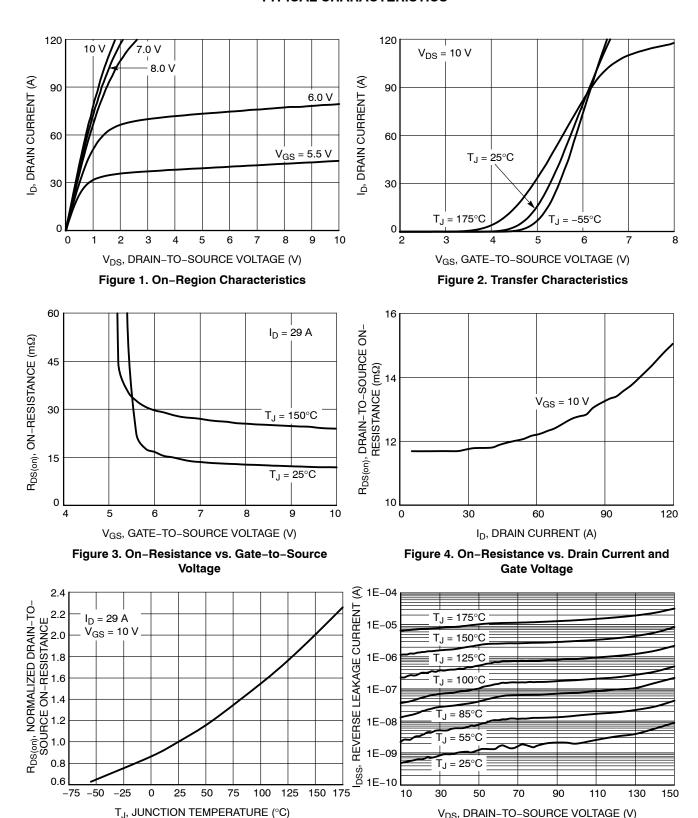
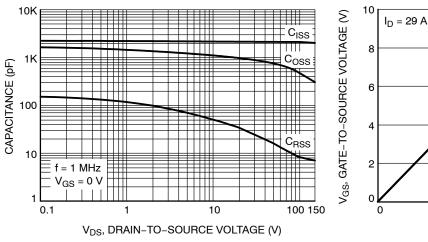



Figure 5. Normalized On-Resistance vs.
Junction Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Voltage

12 Q_q, GATE CHARGE (nC) Figure 8. Gate Charge Characteristics Figure 7. Capacitance vs. Drain-to-Source

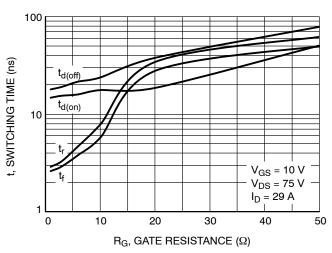


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

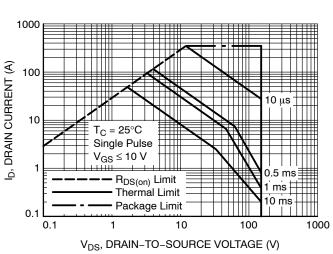
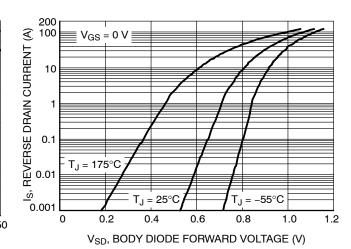



Figure 11. Forward Bias Safe Operating Area

V_{DD} = 25 V

V_{DD} = 50 V

/_{DD} = 75 V

24

30

Figure 10. Source-to-Drain Diode Forward Voltage vs. Source Current

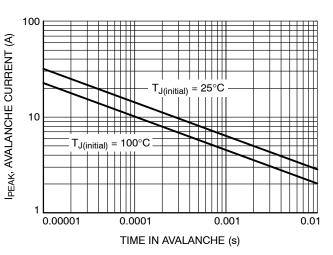


Figure 12. Unclamped Inductive Switching Capability

TYPICAL CHARACTERISTICS

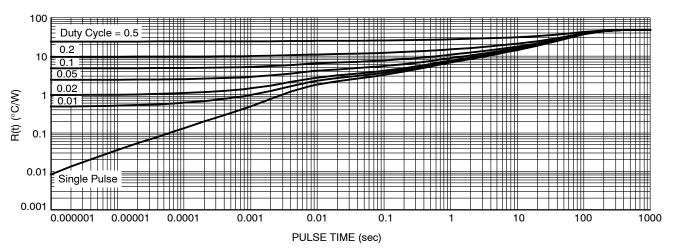
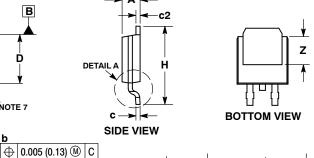
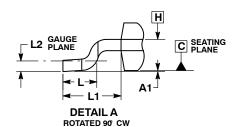
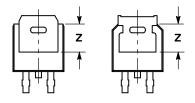




Figure 13. Transient Thermal Impedance

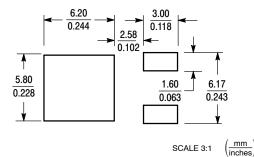
DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α <-b3 В L3 ۩ **DETAIL A**



TOP VIEW

NOTE 7

h2 е



BOTTOM VIEW ALTERNATE CONSTRUCTIONS

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. COLLECTOR	2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
3. EMITTER	3. SOURCE	3. ANODE	3. GATE	3. CATHODE
4. COLLECTOR	4. DRAIN	4. CATHODE	4. ANODE	4. ANODE
STVLE 6: STVLE	7· STVI	F & STVI I	= Q ·	STVI F 10.

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR	2. CATHODE	2. CATHODE	2. ANODE
3. GATE	3. EMITTER	3. ANODE	3. RESISTOR ADJUST	3. CATHODE
4. MT2	4. COLLECTOR	4. CATHODE	4. CATHODE	4. ANODE

SOLDERING FOOTPRINT*

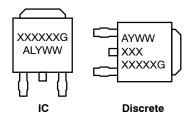
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 21 JUL 2015

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.


 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS OF THE PROPERTY OF THE PR

- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90 REF	
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond