

Is Now Part of

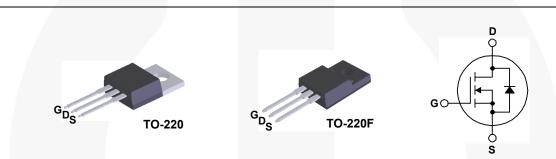
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdicii on any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, and lischi charmeded, or individent devices, damages, and reasonable attorney fees arising out or i, directly, any claim of personal injury or death associated with such unintended or unauthorized uspeces that associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the de

SEMICONDUCTOR


FQP45N15V2 / FQPF45N15V2 N-Channel QFET[®] MOSFET 150 V, 45 A, 40 mΩ

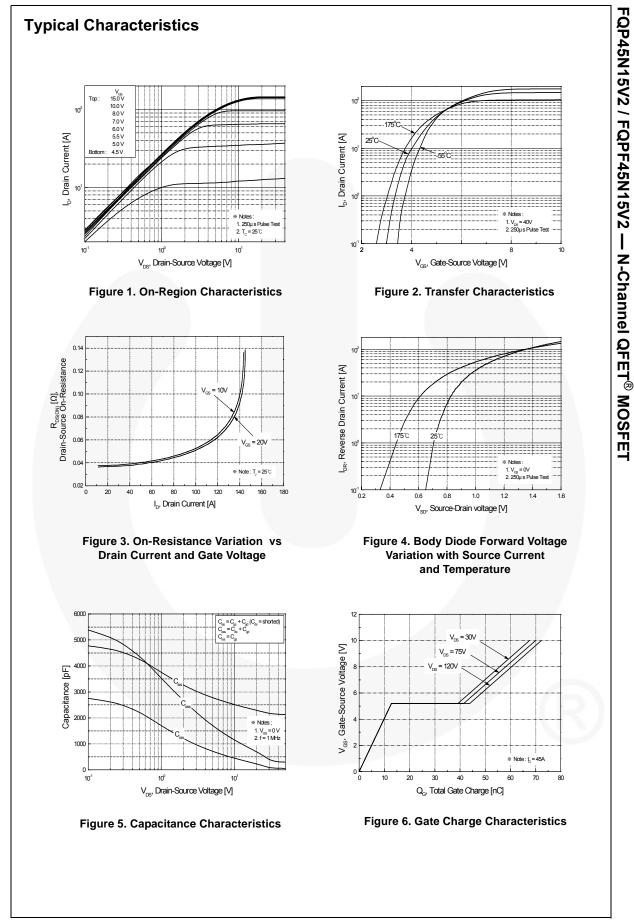
Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

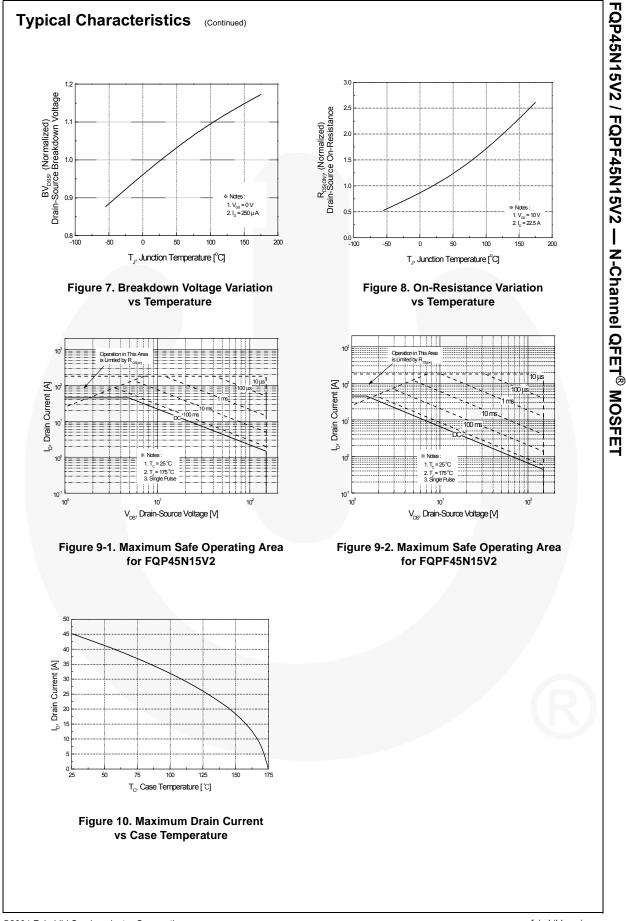
Features

- 45 A, 150 V, ${\sf R}_{{\sf DS}({\sf on})}$ = 40 m Ω (Max.) @ V_{{\sf GS}} = 10 V, ${\sf I}_{\sf D}$ = 22.5 A
- Low Gate Charge (Typ. 72 nC)
- Low Crss (Typ. 135 pF)
- 100% Avalanche Tested

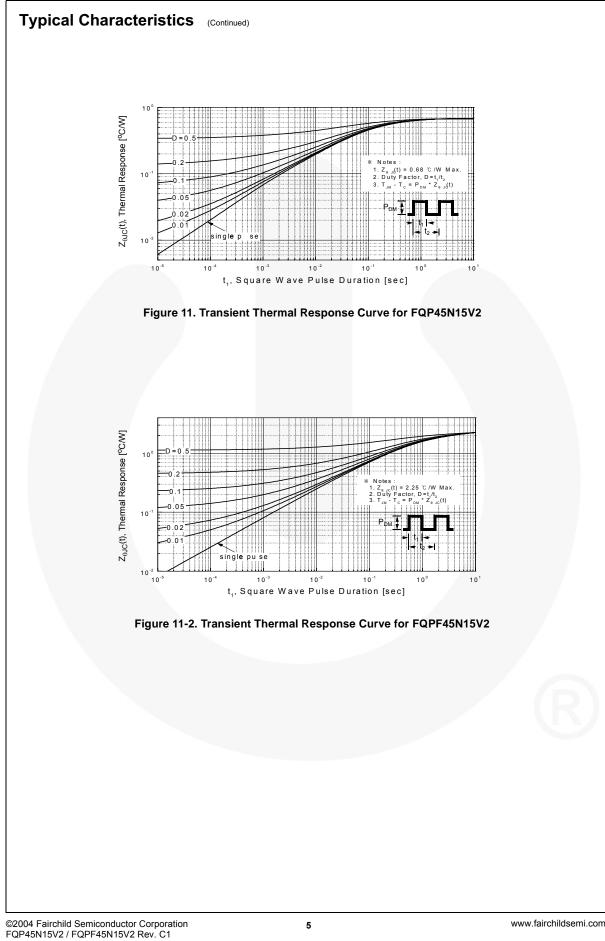
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter		FQP45N15V2	FQPF45N15V2	Unit	
V _{DSS}	Drain-Source Voltage		1	V		
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)	1	45	45 *	А	
	- Continuous (T _C = 100°C))	31	31 *	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	180	180 *	А	
V _{GSS}	Gate-Source Voltage		±	30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	11	1124		
I _{AR}	Avalanche Current	(Note 1)	4	45		
E _{AR}	Repetitive Avalanche Energy (Note 1)		2	mJ		
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4	V/ns		
PD	Power Dissipation (T _C = 25°C)		220	66	W	
	- Derate above 25°C		1.47	0.44	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to	°C		
TL	Maximum lead temperature for soldering purposes,		3	°C		
۰L	1/8" from case for 5 seconds	5				

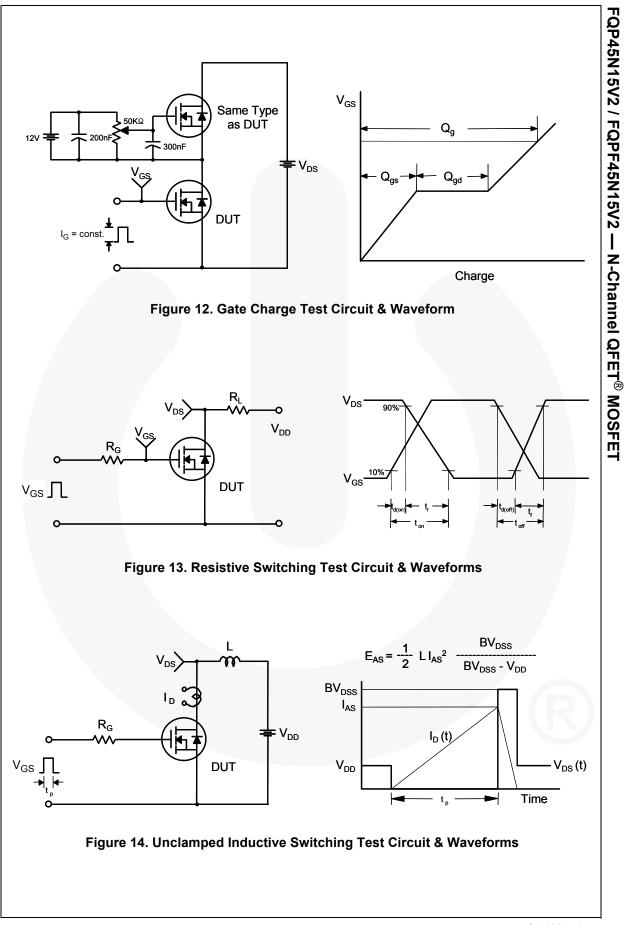
Drain current innited by maximum junction temperatur

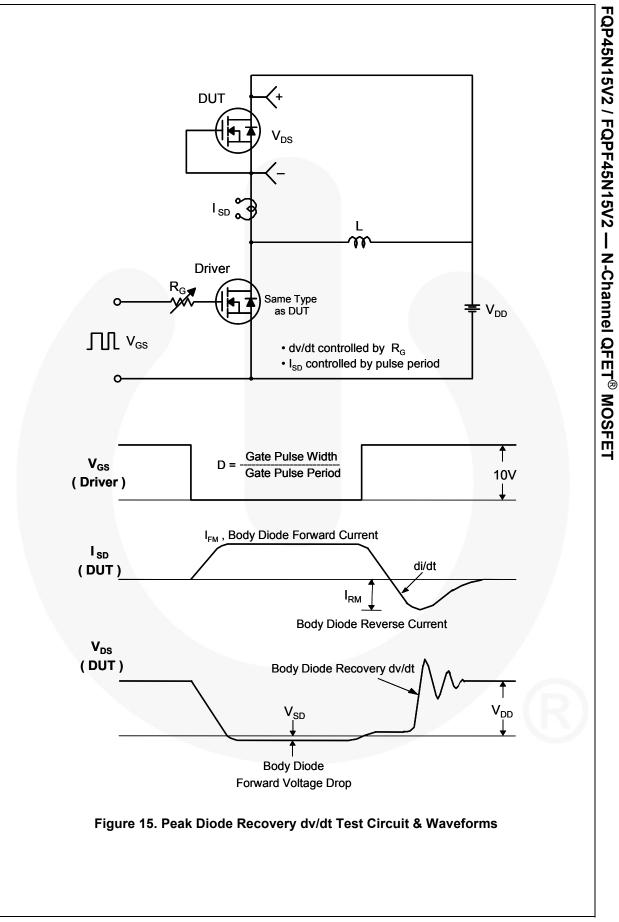

Thermal Characteristics

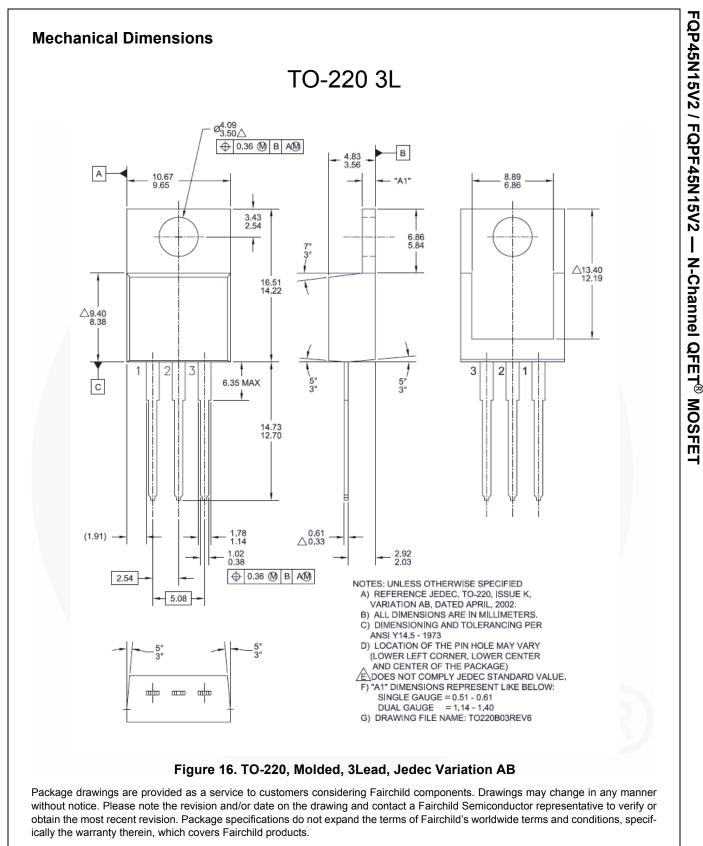
Symbol	Parameter	FQP45N15V2	FQPF45N15V2	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.68	2.25	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.5		°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W


FQP45N	mber	Top Mark Pack				leel S	Size	Tape Width N/A		Quantity 50 units
	P45N15V2 PV245N15 T		TO-220			N/A	4			
FQPF45	N15V2	FQPF45N15V2	TO-220F	Tube		N/A	A	N/A		50 units
Electri Symbol	cal Cl	haracteristics	$\Gamma_c = 25^{\circ}C$ unless oth	erwise noted. Test Conditions	2		Min	Тур	Max	Unit
					5			iyp	max	Unit
Off Cha BV _{DSS}		T istics Source Breakdown Volta		_s = 0 V, I _D = 250 μA			150			V
∆BV _{DSS}				ς – ο ν, η – 200 μλ			150			v
$\Delta \Delta V_{\rm DSS}$	Coeffic	down Voltage Temperati sient	- D	250 μA, Referenced	l to 25	°C		0.21		V/°C
I _{DSS}	Zero Gate Voltage Drain Current		nt	$V_{DS} = 150 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 120 \text{ V}, T_{C} = 150^{\circ}\text{C}$					1 10	μA μA
GSSF	Gate-F	Body Leakage Current, I		s = 30 V, V _{DS} = 0 V					100	nA
I _{GSSR}		Body Leakage Current, I		$_{\rm S} = -30$ V, V _{DS} = 0 V					-100	nA
On Cha	racter	istics								
V _{GS(th)}		hreshold Voltage	V _{DS}	_s = V _{GS} , I _D = 250 μA			2.0		4.0	V
R _{DS(on)}		Drain-Source sistance	V _{Gs}	_s = 10 V, I _D = 22.5 A				0.034	0.04	Ω
9 _{FS}	Forwar	rd Transconductance	V _{DS}	s = 40 V, I _D = 22.5 A				40		S
D	ia Cha	restariation								
uvnam	ic Una	racteristics								
	1	racteristics Capacitance	Vpc	$= 25 V V_{cs} = 0 V$				2330	3030	pF
C _{iss}	Input C			₅ = 25 V, V _{GS} = 0 V, 1.0 MHz				2330 510	3030 670	pF pF
C _{iss} C _{oss}	Input C Output	Capacitance	f = 1							
C _{iss} C _{oss} C _{rss}	Input C Output Revers	Capacitance Capacitance se Transfer Capacitance	f = 1			-		510	670	pF
C _{iss} C _{oss} C _{rss} Switchi	Input C Output Revers	Capacitance Capacitance	f = -	1.0 MHz				510	670	pF
C _{iss} C _{oss} C _{rss} Switchi	Input C Output Revers ing Ch	Capacitance : Capacitance se Transfer Capacitance aracteristics	f =	1.0 MHz ₀ = 75 V, I _D = 45 A,				510 135	670 176	pF pF
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r	Input C Output Revers ing Ch Turn-C Turn-C	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time	f =	1.0 MHz				510 135 22	670 176 54	pF pF ns
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)}	Input C Output Revers ing Ch Turn-C Turn-C Turn-C	Capacitance Capacitance se Transfer Capacitance aracteristics On Delay Time On Rise Time	f =	1.0 MHz ₀ = 75 V, I _D = 45 A,	(Not	te 4)	 	510 135 22 232	670 176 54 474	pF pF ns ns
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \end{array}$	Input C Output Revers Turn-C Turn-C Turn-C Turn-C	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time	f =	1.0 MHz ₀ = 75 V, I _D = 45 A, = 25 Ω	(Not	te 4)	 	510 135 22 232 224	670 176 54 474 458	pF pF ns ns ns
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g	Input C Output Reverss ing Ch Turn-C Turn-C Turn-C Turn-C Turn-C	Capacitance Capacitance se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time	f =	1.0 MHz $p = 75 V, I_D = 45 A,$ $= 25 \Omega$ $q = 120 V, I_D = 45 A,$	(Not	te 4)	 	510 135 22 232 224 246	670 176 54 474 458 502	pF pF ns ns ns ns
$\frac{C_{iss}}{C_{oss}}$ $\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$	Input C Output Reverss ing Ch Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Sate Charge	f =	1.0 MHz ₀ = 75 V, I _D = 45 A, = 25 Ω	(Not	-	 	510 135 22 232 224 246 72	670 176 54 474 458 502 94	pF pF ns ns ns ns nc
C_{iss} C_{oss} C_{rss} Switchi $t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} Q_{g} Q_{gs} Q_{gd}	Input C Output Reverse ing Ch Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Sate Charge Source Charge Orain Charge	f = 1	1.0 MHz $_{D} = 75 \text{ V}, \text{ I}_{D} = 45 \text{ A},$ $= 25 \Omega$ $_{S} = 120 \text{ V}, \text{ I}_{D} = 45 \text{ A},$ $_{S} = 10 \text{ V}$	(Not	-	 	510 135 22 232 224 246 72 13	670 176 54 474 458 502 94	pF pF ns ns ns ns nC nC
C_{iss} C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Input C Output Reverse ing Cha Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Total G Gate-S Gate-E	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Sate Charge Source Charge Orain Charge	f = 1	1.0 MHz $p = 75 V, I_{D} = 45 A,$ $= 25 \Omega$ $q = 120 V, I_{D} = 45 A,$ q = 10 V laximum Rating	(Not	-	 	510 135 22 232 224 246 72 13	670 176 54 474 458 502 94	pF pF ns ns ns nc nC
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _s	Input C Output Reverse ing Ch Turn-C	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Sate Charge Source Charge Orain Charge	f = VDE RG VDE VGS Stics and M Fource Diode Fe	1.0 MHz $_{D} = 75 V, I_{D} = 45 A,$ $_{S} = 25 \Omega$ $_{S} = 120 V, I_{D} = 45 A,$ $_{S} = 10 V$ laximum Rating proward Current	(Not	-	 	510 135 22 232 224 246 72 13 31	670 176 54 474 458 502 94 	pF pF ns ns ns nc nC nC
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _S	Input C Output Reverse ing Ch Turn-C Turn-C Turn-C Turn-C Turn-C Turn-C Total G Gate-S Gate-S Gate-S Gate-S Gate-S Maxim	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Sate Charge Source Charge Orain Charge Diode Characteri um Continuous Drain-S	f = y RG VDE VGE VGE Stics and M ource Diode Forward	1.0 MHz $_{D} = 75 V, I_{D} = 45 A,$ $_{S} = 25 \Omega$ $_{S} = 120 V, I_{D} = 45 A,$ $_{S} = 10 V$ laximum Rating proward Current	(Not	-	 	510 135 22 232 224 246 72 13 31	670 176 54 474 458 502 94 45	PF pF ns ns ns nc nC nC nC
C _{iss} C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _s	Input C Output Revers ing Ch Turn-C T	Capacitance Capacitance Se Transfer Capacitance aracteristics On Delay Time On Rise Time Off Delay Time Off Fall Time Gate Charge Orain Charge Diode Characteri um Continuous Drain-S um Pulsed Drain-Source	f = f	1.0 MHz $_{D} = 75 V, I_{D} = 45 A,$ $= 25 \Omega$ $_{3} = 120 V, I_{D} = 45 A,$ $_{3} = 10 V$ laximum Rating prward Current rd Current	(Not	-	 	510 135 22 232 224 246 72 13 31	670 176 54 474 458 502 94 45 180	PF pF ns ns ns nc nC nC nC A A

©2004 Fairchild Semiconductor Corporation FQP45N15V2 / FQPF45N15V2 Rev. C1

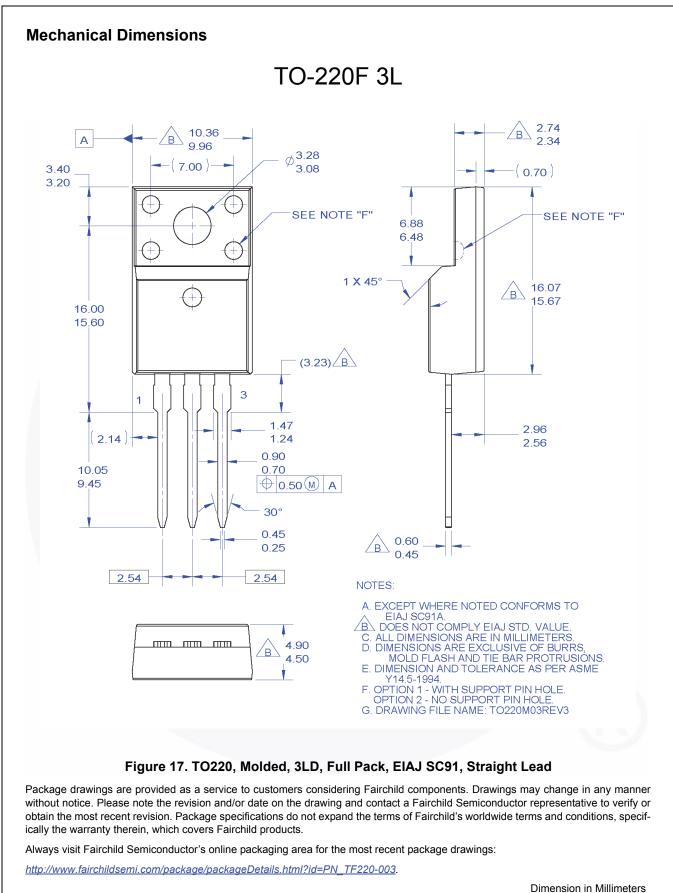



©2004 Fairchild Semiconductor Corporation FQP45N15V2 / FQPF45N15V2 Rev. C1



Downloaded from Arrow.com.

FQP45N15V2 / FQPF45N15V2 — N-Channel QFET[®] MOSFET



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003.

Dimension in Millimeters

www.fairchildsemi.com

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.