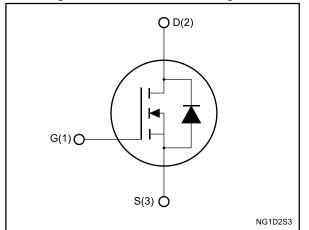

STFU15NM65N


N-channel 650 V, 0.35 Ω typ., 12 A MDmesh™ II Power MOSFET in a TO-220FP ultra narrow leads package

Datasheet - production data

TO-220FP ultra narrow leads

Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max	ΙD
STFU15NM65N	650 V	0.38 Ω	12 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh[™] technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging	
STFU15NM65N 15NM65N		TO-220FP ultra narrow leads	Tube	

September 2015

DocID027631 Rev 2

www.st.com

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuit	8
4	Packag	e information	9
	4.1	TO-220FP ultra narrow leads package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vds	Drain source voltage	650	V
V _{GS}	Gate source voltage	± 25	V
	Drain current (continuous) at T _c = 25 °C	12 ⁽¹⁾	٨
ID	I_D Drain current (continuous) at $T_c = 100 \text{ °C}$		A
I _{DM} ⁽²⁾	Drain current (pulsed)	48	А
Ртот	Total dissipation at $T_c = 25 \ ^{\circ}C$	30	W
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_C = 25$ °C)	2500	V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	- 55 to 150	

Notes:

⁽¹⁾Limited by maximum junction temperature.

 $\ensuremath{^{(2)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $\label{eq:ISD} ^{(3)}I_{SD} \leq 12 \text{ A}, \text{ di/dt} \leq 400 \text{ A/}\mu\text{s}; \text{ } \text{V}_{\text{DSpeak}} \leq \text{V}_{(\text{BR})\text{DSS}}, \text{ } \text{V}_{\text{DD}} = 80\% \text{ } \text{V}_{(\text{BR})\text{DSS}}.$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	4.17	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	C/VV

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	3	А
Eas	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$; $V_{DD} = 50 \text{ V}$)	187	mJ

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	650			V
IDSS	Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = 650 V V _{DS} = 650 V, T _C = 125 °C			1 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	μA
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 250 µA	2	3	4	V
RDS(on)	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		0.35	0.38	Ω

Table 5: On /off states

Table 6: Dynamic						
Symbol	Symbol Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	983	-	
Coss	Output capacitance	V _{DS} = 50 V, f = 1 MHz,	-	57	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	4.5	-	
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V	-	146	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	4.9	-	Ω
Qg	Total gate charge		-	33.3	-	(
Q _{gs}	Gate-source charge	V _{DD} = 520 V, I _D = 12 A, V _{GS} = 10 V		5.7	-	nC
Q _{gd}	Gate-drain charge	VG0 - 10 V	-	17	-	

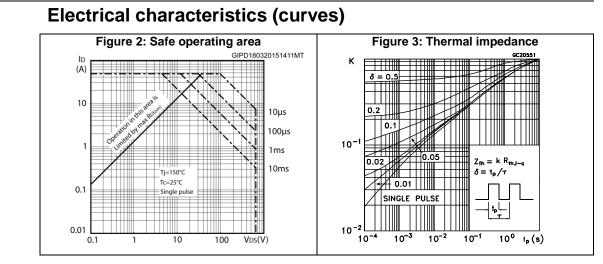
Notes:

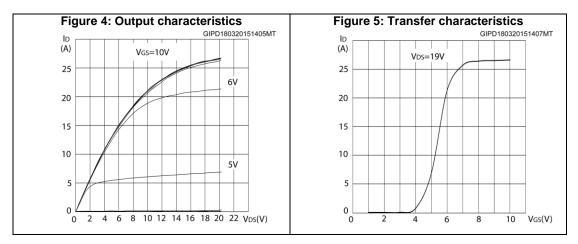
 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

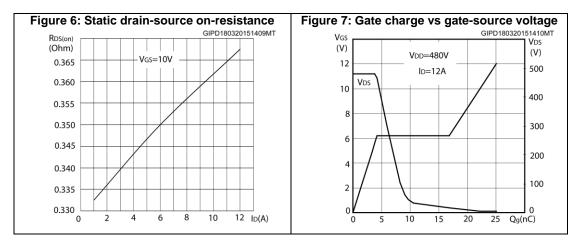
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	55.5	-	
tr	Rise time	V _{DD} = 325 V, I _D = 6 A,	-	8.5	-	ns
t _{d(off)}	Turn-off delay time	R_G = 4.7 Ω , V_{GS} = 10 V	-	14	-	
tf	Fall time		-	11.4	-	

Electrical characteristics

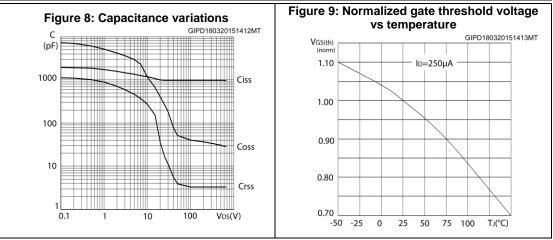
	Table 8: Source drain diode							
Symbol	Symbol Parameter Test conditions		Min.	Тур.	Max.	Unit		
Isd	Source-drain current		-		12	А		
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		48	A		
Vsd ⁽²⁾	Forward on voltage	$I_{SD} = 12 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.6	V		
trr	Reverse recovery time		-	428		ns		
Qrr	Reverse recovery charge	I _{SD} = 12 A, di/dt = 100 A/µs, V _{DD} = 60 V	-	4.7		μC		
IRRM	Reverse recovery current		-	21.5		А		
trr	Reverse recovery time		-	570		ns		
Qrr	Reverse recovery charge	I _{SD} = 12 A, di/dt = 100 A/µs, V _{DD} = 60 V, T _i = 150 °C	-	6.2		μC		
IRRM	Reverse recovery current		-	22		А		

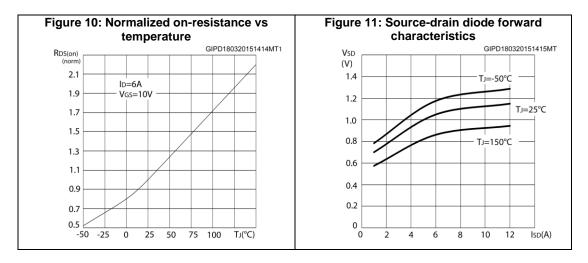

Notes:

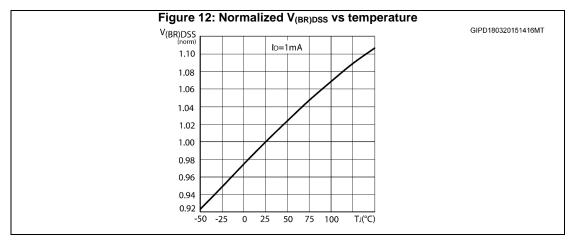

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area.


 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%.

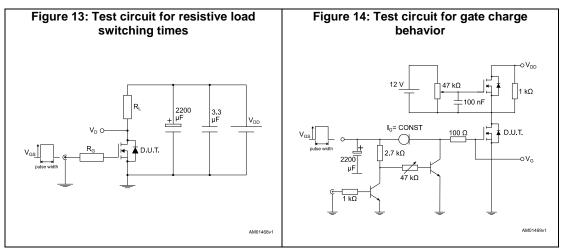
2.1

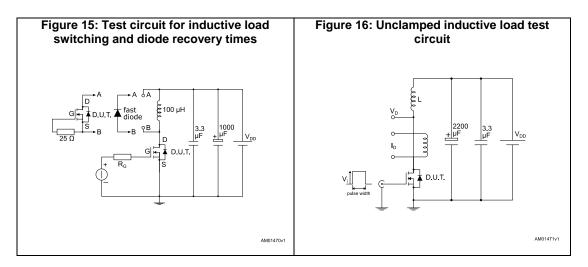


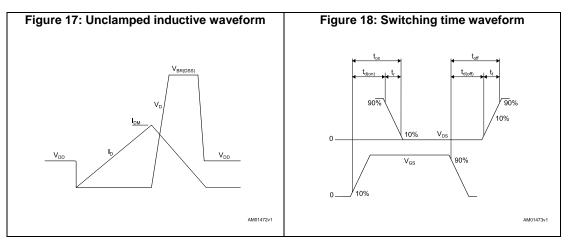



6/12

Electrical characteristics







57

3 Test circuit

DocID027631 Rev 2

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220FP ultra narrow leads package information

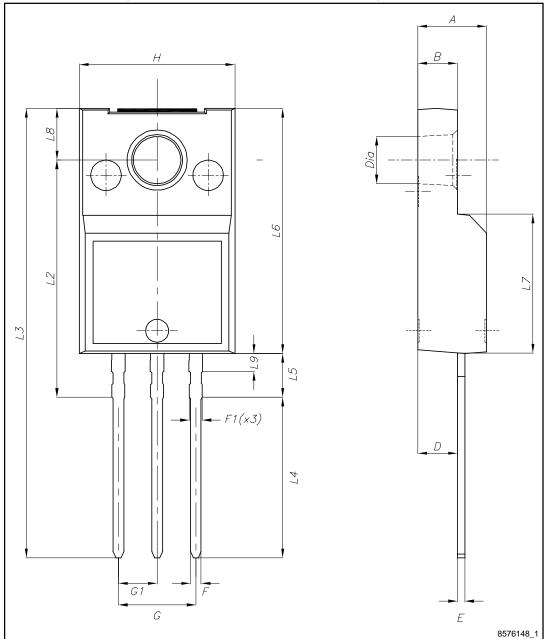


Figure 19: TO-220FP ultra narrow leads package outline

Package information

STFU15NM65N

nformation			STFU15NM65N
Та	ble 9: TO-220FP ultra na	rrow leads mechanical	data
Dim.		mm	
Dini.	Min.	Тур.	Max.
A	4.40		4.60
В	2.50		2.70
D	2.50		2.75
E	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
16-Mar-2015	1	Initial release
09-Sep-2015	2	Datasheet status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

