

STPSC2H065

Datasheet

650 V, 2 A high surge silicon carbide power Schottky diode

Features

- No reverse recovery charge in application current range
- Switching behavior independent of temperature
- High forward surge capability
- ECOPACK2 compliant component
- Power efficient product

Applications

- Switch mode power supply
- PFC
- "DC/DC" converters
- LLC topologies
- Boost diode

Description

The SiC diode is an ultra-high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, the STPSC2H065 SiC diode will boost performance in hard switching conditions.

Product summary		
Symbol	Value	
I _{F(AV)}	2 A	
V _{RRM}	650 V	
T _{j(max.)}	175 °C	
V _{F(typ.)}	1.38 V	

Product status

STPSC2H065

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol	Par	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage		V
I _{F(RMS)}	Forward rms current	Forward rms current		А
I _{F(AV)}	Average forward current	$T_c = 160 \ ^{\circ}C^{(1)}, \ DC$	2	Α
		t_p = 10 ms sinusoidal, T _c = 25 °C	20	
I _{FSM}	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T _c = 125 °C	18	Α
		t_p = 10 µs square, T_c = 25 °C	140	
I _{FRM}	Repetitive peak forward current $T_c = 160 \ ^{\circ}C \ ^{(1)}, T_j = 175 \ ^{\circ}C, \ \delta = 0.1$		8.5	А
T _{stg}	Storage temperature range		-65 to +175	°C
Тj	Operating junction temperature range		-40 to +175	°C

1. Value based on R_{th(j-c)} max.

Table 2. Thermal resistance parameters

Symbol	pol Parameter Typ. value		Max. value	Unit
R _{th(j-c)}	Junction to case	2.50	3.50	°C/W

For more information, please refer to the following application notes related to the power losses :

AN5088 : Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾			V _R = V _{RRM}	-	1.5	20	
'R' '	I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	VR - VRRM	-	17	84	μA
$\mathcal{M}_{-}(2)$	V _F ⁽²⁾ Forward voltage drop		I _F = 2 A	-	1.38	1.55	V
v F ()			1F - 2 A	-	1.60	1.95	V

1. $t_p = 10 \text{ ms}, \delta < 2\%$

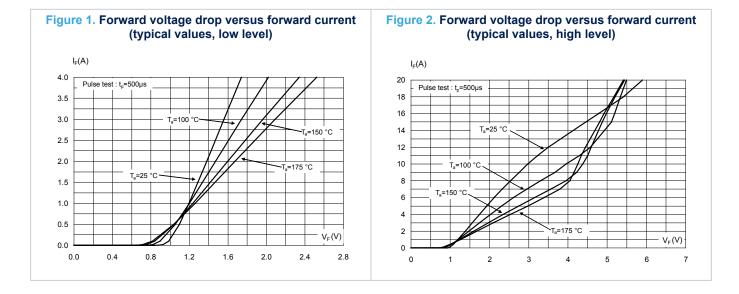
2. $t_p = 500 \ \mu s, \ \delta < 2\%$

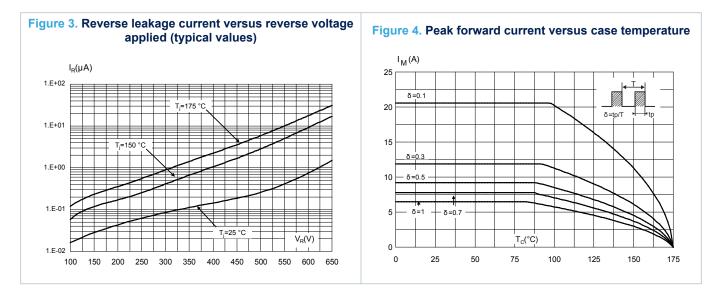
To evaluate the conduction losses, use the following equation:

 $P = 1.001 \text{ x } I_{F(AV)} + 0.474 \text{ x } I_{F}^{2}(RMS)$

For more information, please refer to the following application notes related to the power losses :

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode


Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	7.9	nC
Ci Total capacitance		V_{R} = 0 V, T _c = 25 °C, F = 1 MHz	135	рF
Oj	Total capacitance	V_{R} = 400 V, T _c = 25 °C, F = 1 MHz	14	рг
1.		V _R		


Table 4. Dynamic electrical characteristics

. Most accurate value for the capacitive charge: $Q_{Cj}(V_R) = \int_{0}^{V_R} C_j(V) dV$

1.1 Characteristics (curves)

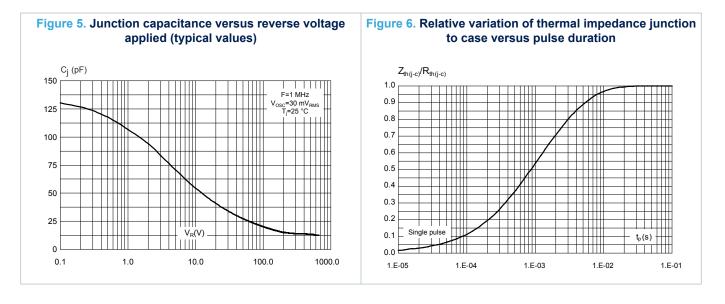
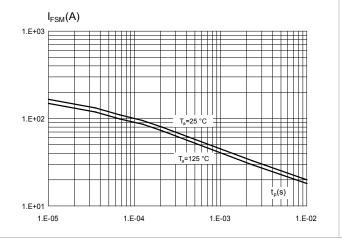
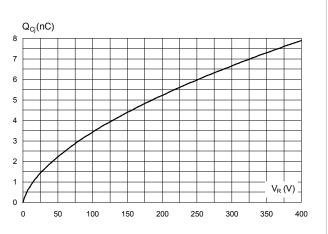
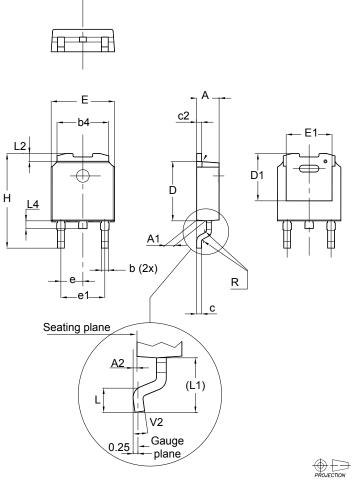




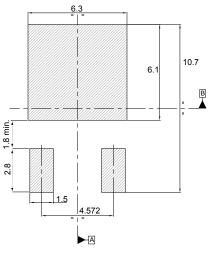
Figure 7. Non-repetitive peak surge forward current versus pulse duration (sinusoidal waveform)


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 DPAK package information

Epoxy meets UL94, V0



	Dimensions					
Dim.		Millimeters		Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
b	0.64		0.90	0.025		0.035
b4	5.20		5.40	0.205		0.213
с	0.45		0.60	0.018		0.024
c2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
D1	4.95	5.10	5.25	0.195	0.201	0.207
E	6.40		6.60	0.252		0.260
E1	4.60	4.70	4.80	0.181	0.185	0.189
е	2.159	2.286	2.413	0.085	0.090	0.095
e1	4.445	4.572	4.699	0.175	0.180	0.185
Н	9.35		10.10	0.368		0.398
L	1.00		1.50	0.039		0.059
(L1)	2.60	2.80	3.00	0.102	0.110	0.118
L2	0.65	0.80	0.95	0.026	0.031	0.037
L4	0.60		1.00	0.024		0.039
R		0.20			0.008	
V2	0°		8°	0°		8°

Table 5. DPAK mechanical data

1. Inches dimensions given for reference only

Figure 10. DPAK recommended footprint (dimensions are in mm)

The device must be positioned within $\boxed{\oplus 0.05 |A|B}$

DS12989 - Rev 1				
Downloaded from	Arrow.com.			

3 Ordering Information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC2H065B-TR	PSC2 H065	DPAK	0.35 g	2500	Tape and reel

Revision history

Table 7. Document revision history

Date	Version	Changes
25-Apr-2019	1	First issue.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved