57

STF6N65K3, STFI6N65K3, STU6N65K3

N-channel 650 V, 1.1 Ω typ., 5.4 A SuperMESH3[™] Power MOSFET in TO-220FP, I²PAKFP, IPAK

Features

Order codes	V_{DSS}	R _{DS(on)} max.	۱ _D	Ptot
STF6N65K3				30 W
STFI6N65K3	650 V < 1.3 Ω	5.4 A	30 W	
STU6N65K3				110 W

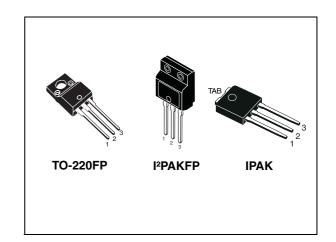
- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

Switching applications

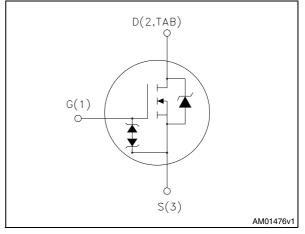
Description

These SuperMESH3[™] Power MOSFETs are the result of improvements applied to STMicroelectronics' SuperMESH[™] technology, combined with a new optimized vertical structure. These devices boast an extremely low on-resistance, superior dynamic performance and high avalanche capability, rendering them suitable for the most demanding applications.


Table 1. Device summa

Order codes	Marking	Package	Packaging
STF6N65K3		TO-220FP	
STFI6N65K3	6N65K3	I ² PAKFP	Tube
STU6N65K3		IPAK	

November 2012


Doc ID 18424 Rev 2

This is information on a product in full production.

Datasheet — production data

Figure 1. Internal schematic diagram

Contents

1	Electrical ratings
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 10
5	Revision history

1 Electrical ratings

Cumhal	Devenueter		Value		11
Symbol	Parameter	TO-220FP	I ² PAKFP	IPAK	Unit
V_{DS}	Drain-source voltage		650	• •	V
V_{GS}	Gate- source voltage		± 30		V
Ι _D	Drain current (continuous) at T _C = 25 °C	5.4	(1)	5.4	Α
I _D	Drain current (continuous) at T _C = 100 °C	3 ⁽¹⁾		3	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	21.6	; (1)	21.6	Α
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	30)	110	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	5.4		A	
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	100		mJ	
ESD	Gate-source human body model (C = 100 pF, R = 1.5 k Ω)	2.5		kV	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	12		V/ns	
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink $(t = 1 \text{ s}; \text{Tc} = 25 \text{ °C})$	250	00		V
T _{stg}	Storage temperature	-	55 to 150		°C
Тj	Max. operating junction temperature		150		°C

Table 2. Absolute maximum ratings

1. Limited by package

2. Pulse width limited by safe operating area

3. I_{SD} \leq 5.4 A, di/dt \leq 400 A/µs, V_{DD} = 80% V_{(BR)DSS}

Table 3. Thermal data

Symbol	Parameter	Value			Unit
		TO-220FP	I ² PAKFP	IPAK	Onit
R _{thj-case}	Thermal resistance junction-case max	4.17		1.14	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5		100	°C/W

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			0.8 50	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 9	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on-resistance	V_{GS} = 10 V, I _D = 2.7 A		1.1	1.3	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 50 V, f = 1 MHz, V _{GS} = 0	-	880 65 12	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Eq. capacitance time related	$V_{GS} = 0, V_{DS} = 0$ to 520 V	-	43	-	pF
C _{o(er)} ⁽²⁾	Eq. capacitance energy related		-	27	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	3.5	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 500 V, I_D = 5.4 A, V_{GS} = 10 V (see <i>Figure 18</i>)	-	33 4 21	-	nC nC nC

1. $C_{oss eq}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. $C_{oss eq}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_DS increases from 0 to 80% V_{DSS}

	o miconing timeo					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 325 \text{ V}, \text{ I}_{D} = 2.7 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 17</i>)	-	14 10 44 24	-	ns ns ns ns

Table 6. Switching times

Table 7.Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		5.4 21.6	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 5.4 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 5.4 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 22</i>)	-	285 5100 14		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 5.4 A, di/dt = 100 A/μs V _{DD} = 60 V, T _j = 150 °C (see <i>Figure 22</i>)	-	330 2500 15.5		ns nC A

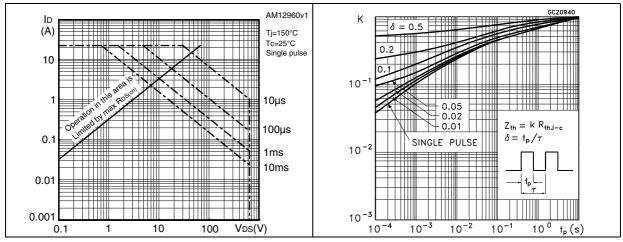
1. Pulse width limited by safe operating area

2. Pulsed: Pulse duration = 300 µs, duty cycle 1.5%

Table 6. Gale-Source Zener ulous	Table 8.	Gate-source	Zener	diode
----------------------------------	----------	-------------	-------	-------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	lgs=± 1 mA, I _D =0 (open drain)	30		-	v

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components



2.1 Electrical characteristics (curves)

Figure 3. Thermal impedance for TO-220FP and I²PAKFP

Thermal impedance for IPAK

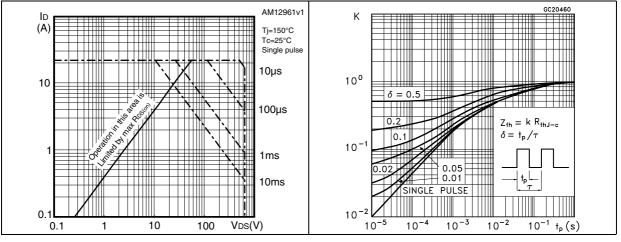
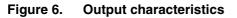
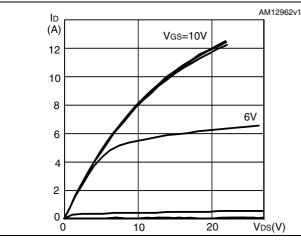
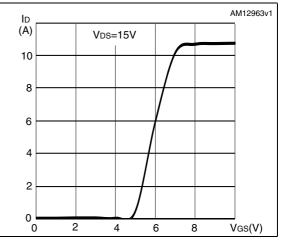
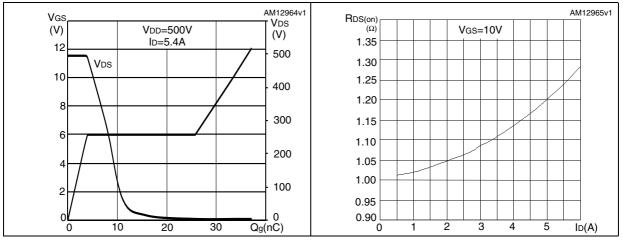





Figure 5.



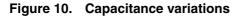


Figure 8. Gate charge vs gate-source voltage Figure 9. Static drain-source on-resistance

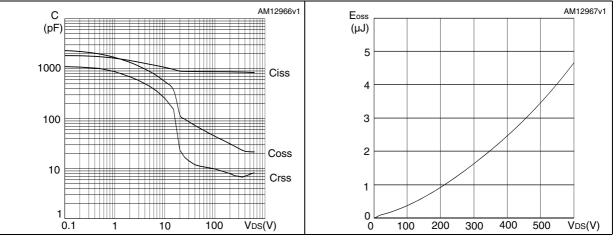
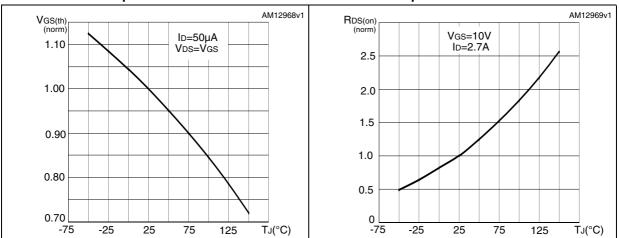
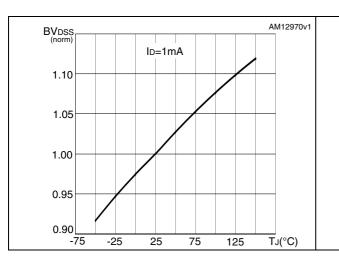
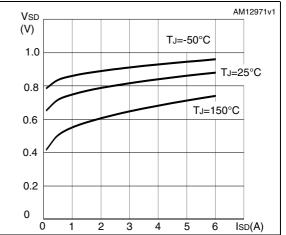




Figure 12. Normalized gate threshold voltage Figure 13. vs temperature

Normalized on-resistance vs temperature



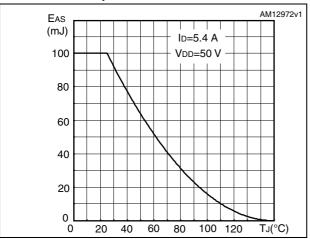
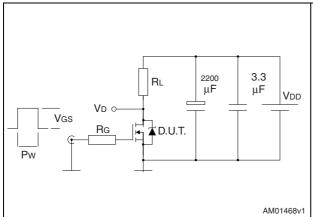


Figure 14. Normalized BV_{DSS} vs temperature Figure 15. Source-drain diode forward

characteristics

Figure 16. Maximum avalanche energy vs temperature



8/16

3 Test circuits

Figure 17. Switching times test circuit for resistive load

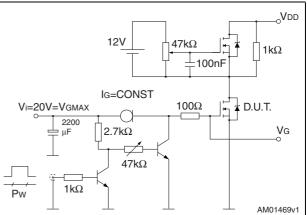
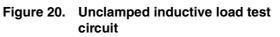
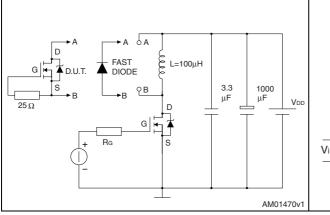




Figure 18. Gate charge test circuit

Figure 19. Test circuit for inductive load switching and diode recovery times

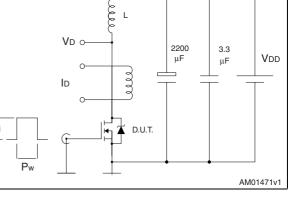
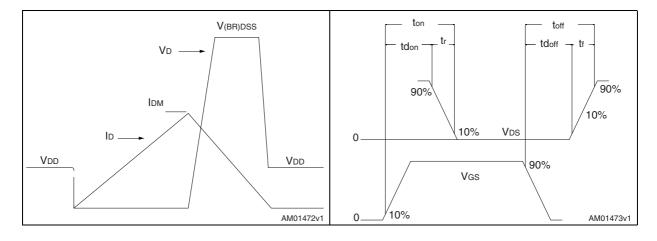



Figure 22. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

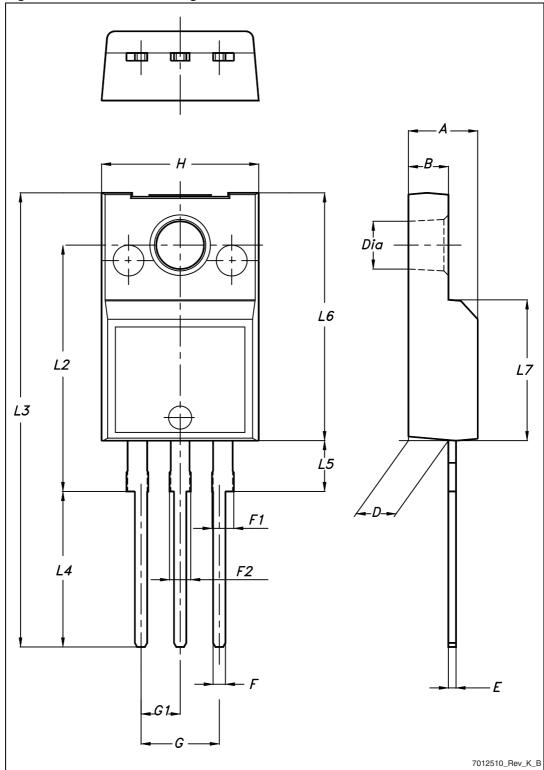
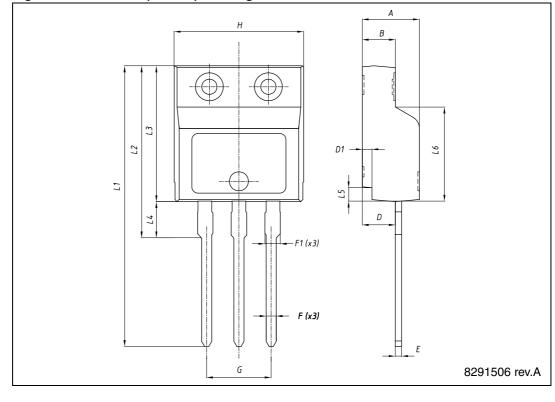

Dim.	mm			
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
Е	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6	28.6 30.6		
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9	9		
Dia	3	3		

Table 9. TO-220FP mechanical data

Figure 23. TO-220FP drawing

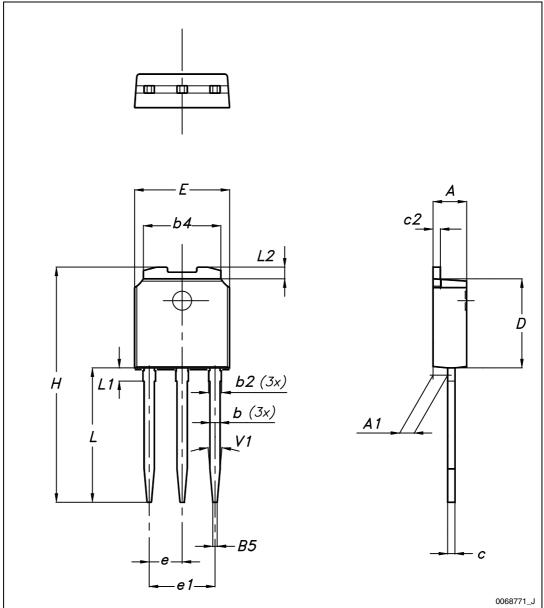


Doc ID 18424 Rev 2

Dim.	mm				
	Min.	Тур.	Max.		
А	4.40	4.40			
В	2.50	2.50			
D	2.50	2.50 2.75			
D1	0.65	0.65 0.85			
E	0.45	0.45 0.70			
F	0.75 1.00				
F1					
G	4.95	4.95 -			
Н	10.00	10.00 10.40			
L1	21.00	21.00 23.00			
L2	13.20	13.20 14.10			
L3	10.55	10.55 10.85			
L4	2.70	2.70 3.20			
L5	0.85	0.85 1.25			
L6	7.30	7.30 7.50			

 Table 10.
 I²PAKFP (TO-281) mechanical data

Figure 24. I²PAKFP (TO-281) drawing



DIM	mm.		
DIM.	min.	typ	max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.3	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10 ^o	

Table 11. IPAK (TO-251) mechanical data

Figure 25. IPAK (TO-251) drawing

5 Revision history

Table 12.	Document revision history
-----------	---------------------------

Date	Revision	Changes
05-Apr-2011	1	First release
07-Nov-2012	2	Added new part numbers: STFI6N65K3 in I ² PAKFP package and STU6N65K3 in IPAK packages. <i>Section 2.1: Electrical characteristics (curves)</i> has been updated. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

Doc ID 18424 Rev 2

