STL7N60M2

N-channel 600 V, 0.92 Ω typ., 5 A MDmesh™ M2 Power MOSFET in a PowerFLAT™ 5x5 package

Datasheet - production data

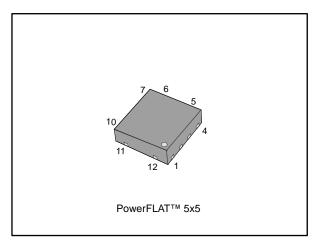
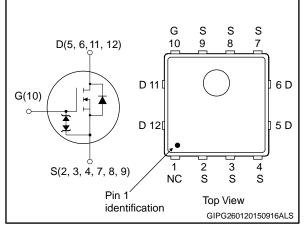



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ Tjmax	R _{DS(on)} max	I _D
STL7N60M2	650 V	1.05 Ω	5 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL7N60M2	7N60M2	PowerFLAT 5x5	Tape and reel

January 2015 DocID027417 Rev 1 1/13

Contents STL7N60M2

Contents

1	Electric	eal ratings	3
2	Electric	al characteristics	4
	2.2	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Package	e mechanical data	9
	4.1	Package mechanical data	10
5	Revisio	n history	12

Downloaded from Arrow.com.

STL7N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	5	Α
I _D	Drain current (continuous) at T _C = 100 °C	3.2	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	20	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	1.2	А
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	0.8	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	4.8	Α
P _{TOT}	Total dissipation at T _C = 25 °C	67	W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C	4	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.83	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max	31.3	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{\text{jmax}})$	1	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	80	mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}\!} When$ mounted on FR-4 Board of 1 inch², 2 oz Cu (t < 10 s)

 $^{^{(3)}}I_{SD} \le 5$ A, di/dt ≤ 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{^{(4)}}V_{DS} \le 480 \text{ V}$

Electrical characteristics STL7N60M2

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 5: On/off states

1 11110 01 01111010						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zero gate voltage Drain	V _{GS} = 0 V, V _{DS} = 600 V			1	μΑ
I _{DSS}	current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 2 A		0.92	1.05	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	271	•	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	15.7	1	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	ı	0.68	ı	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	75.5	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	7.2	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 5 \text{ A}, V_{GS} = 10 \text{ V}$	-	8.8	-	nC
Q _{gs}	Gate-source charge	(see Figure 15: "Gate charge	-	1.8	-	nC
Q_{gd}	Gate-drain charge	test circuit")	-	4.3	1	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 2.5 \text{ A}$	ı	7.6	ı	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching times	-	7.2	-	ns
t _{d(off)}	Turn-off-delay time	test circuit for resistive load" and	-	19.3	-	ns
t _f	Fall time	Figure 19: "Switching time waveform")	-	15.9	-	ns

577

 $^{^{(1)}}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	Α
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 5 \text{ A}$	-		1.6	V
t _{rr}	Reverse recovery time		-	275		ns
Qrr	Reverse recovery charge	I _{SD} = 5 A, di/dt = 100 A/μs, V _{DD} = 60 V (see <i>Figure 19</i> :	-	1.55		μC
I _{RRM}	Reverse recovery current	"Switching time waveform")	-	11		Α
t _{rr}	Reverse recovery time		-	376		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 5$ A, di/dt = 100 A/ μ s, $V_{DD} = 60$ V, $T_j = 150$ °C (see Figure 19: "Switching time	-	2.1		μC
I _{RRM}	Reverse recovery current	waveform")	-	11		Α

Notes:

 $^{^{(1)}}$ Pulse width is limited by safe operating area

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.2 Electrical characteristics (curves)

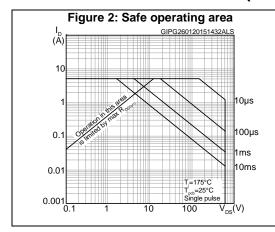
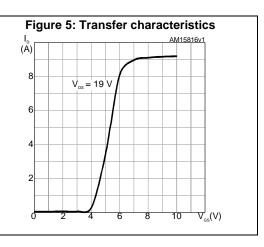
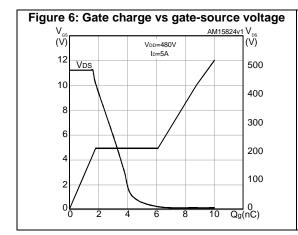
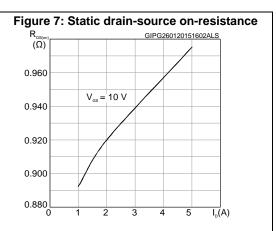





Figure 3: Thermal impedance GIPG270120151414ALS $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.05$ $\delta = 0.05$ $\delta = 0.05$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.05$ $\delta = 0.0$

6/13

STL7N60M2 Electrical characteristics

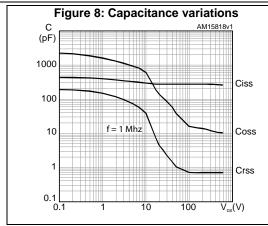


Figure 9: Output capacitance stored energy

E_{OSS}
(µJ)
2.5
2.0
1.5
1.0
0.5
0 100 200 300 400 500 600 V_{DS}(V)

Figure 10: Normalized gate threshold voltage vs temperature

VGS(th) AM15718v1

1.1

1.0

0.9

0.8

0.7

0.6

-50

0

50

100

T_j(°C)

Figure 11: Normalized on-resistance vs temperature

R_{DS(on)}
(norm)
2.5

2.1

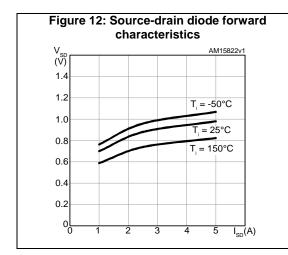
1.7

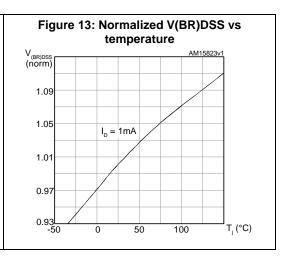
V_{GS} = 10 V

1.3

0.9

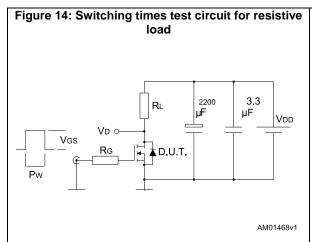
0.5


-50


0

50

100


T_i^CC)

Test circuits STL7N60M2

3 Test circuits

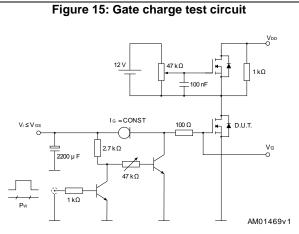
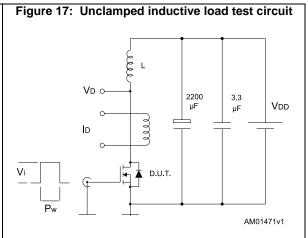
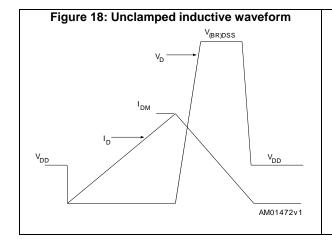
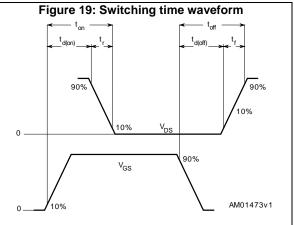
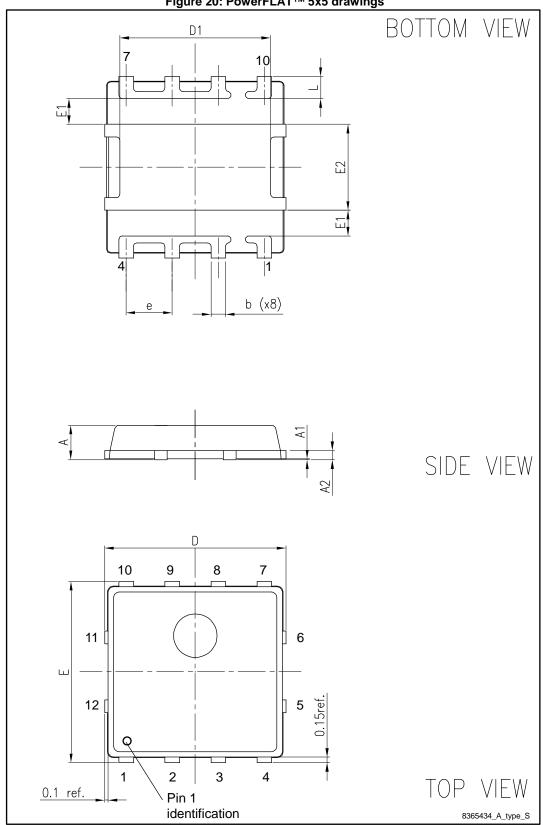





Figure 16: Test circuit for inductive load switching and diode recovery times

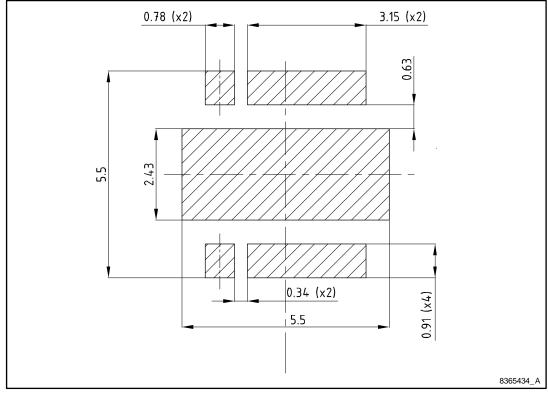
8/13 DocID027417 Rev 1


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 Package mechanical data

Figure 20: PowerFLAT™ 5x5 drawings



10/13 DocID027417 Rev 1

Table 9: PowerFLAT 5x5 mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
Α	0.80		1.0		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D		5.00			
D1	4.05		4.25		
E		5.00			
E1	0.64		0.79		
E2	2.25		2.45		
е		1.27			
L	0.45		0.75		

Figure 21: PowerFLAT™ 5x5 recommended footprint (dimensions are in mm)

Revision history STL7N60M2

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
26-Jan-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

