

STP13N65M2, STU13N65M2

Datasheet - production data

N-channel 650 V, 0.37 Ω typ.,10 A MDmesh[™] M2 Power MOSFETs in TO-220 and IPAK packages

Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	Ι _D
STP13N65M2	650 V	0.43Ω	10A
STU13N65M2	000 V	0.4312	IUA

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs developed using MDmesh[™] M2 technology. Thanks to their strip layout and improved vertical structure, the devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1. Device summary

Order code	Marking	Package	Packaging
STP13N65M2	13N65M2	TO-220	Tube
STU13N65M2		IPAK	Tube

December 2014

DocID026894 Rev 1

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 10
	4.1 TO-220, STP13N65M211
	4.2 IPAK, STU13N65M2
5	Revision history15

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	10	А
Ι _D	Drain current (continuous) at T _C = 100 °C	6.3	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	40	А
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	v/ns
T _{stg}	Storage temperature	- 55 to 150	- °C
Т _і	Max. operating junction temperature	150	

Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area.

2. I_{SD} \leq 10 A, di/dt \leq 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD}= 400 V

3. $V_{DS} \leq 520 \text{ V}$

Table 3. Thermal data

Symbol	Parameter	v	Value	
		TO-220	IPAK	Unit
R _{thj-case}	Thermal resistance junction-case max	1.14		
R _{thj-amb}	Thermal resistance junction-ambient max	62.5 100		°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	1.8	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}; V_{DD} = 50 \text{ V}$)	350	mJ

2 Electrical characteristics

($T_C = 25$ °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V, I_{D} = 1 mA$	650			V
	Zero gate voltage	$V_{GS} = 0 V, V_{DS} = 650 V$			1	μΑ
I _{DSS}	I _{DSS} drain current	$V_{GS} = 0 V, V_{DS} = 650 V,$ $T_{C} = 125 °C$			100	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 5 A		0.37	0.43	Ω

Table 6. Dynamic

······						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	590	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	27.5	-	pF
C _{rss}	Reverse transfer capacitance		-	1.1	-	pF
$C_{oss eq}^{(1)}$	Equivalent output capacitance	V_{GS} = 0 V, V_{DS} = 0 to 520 V	-	168.5	-	pF
R_G	Intrinsic gate resistance	f = 1 MHz open drain	-	6.5	-	Ω
Qg	Total gate charge		-	17	-	nC
Q _{gs}	Gate-source charge	V _{DD} = 520 V, I _D = 10 A, V _{GS} = 10 V, (see <i>Figure 17</i>)	-	3.3	-	nC
Q _{gd}	Gate-drain charge		-	7	-	nC

1. Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 7. Switching tim	nes
------------------------	-----

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, \text{ I}_{D} = 5 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 16</i> and <i>Figure 21</i>)	-	11	-	ns
t _r	Rise time		-	7.8	-	ns
t _{d(off)}	Turn-off delay time		-	38	-	ns
t _f	Fall time		-	12	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		10	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		40	А
$V_{SD}^{(2)}$	Forward on voltage	V _{GS} = 0 V, I _{SD} = 10 A	-		1.6	V
t _{rr}	Reverse recovery time		-	312		ns
Q _{rr}	Reverse recovery charge	I _{SD} =10 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 18</i>)	-	2.7		μC
I _{RRM}	Reverse recovery current		-	17.5		А
t _{rr}	Reverse recovery time	I _{SD} = 10 A, di/dt = 100 A/µs,	-	464		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	4.1		μC
I _{RRM}	Reverse recovery current	(see Figure 18)	-	17.5		Α

Table 8. Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

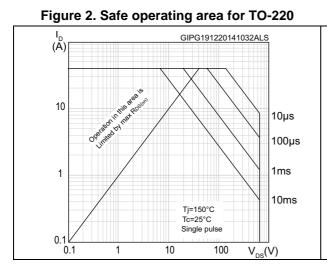


Figure 4. Safe operating area for IPAK

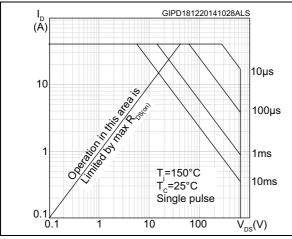


Figure 6. Output characteristics

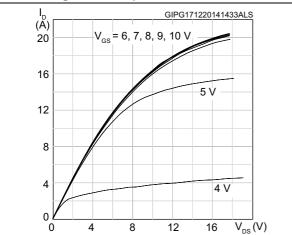
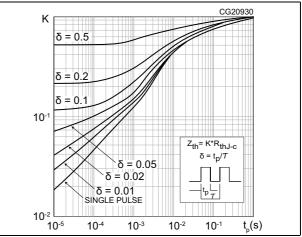



Figure 3. Thermal impedance for TO-220

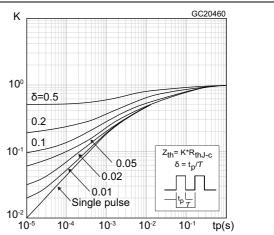
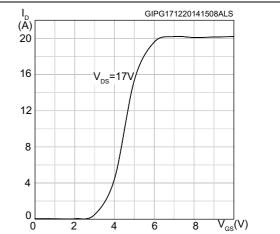
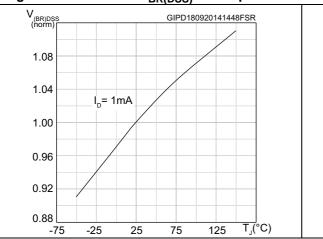




Figure 7. Transfer characteristics

6/16

Figure 8. Normalized V_{BR(DSS)} vs temperature Figure 9. Static drain-source on-resistance

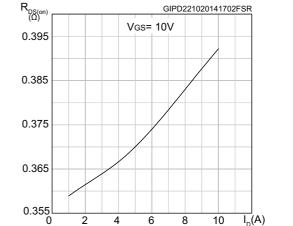


Figure 10. Gate charge vs gate-source voltage

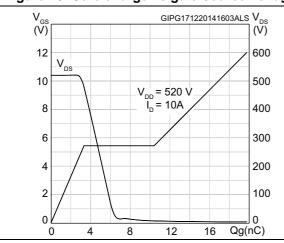


Figure 12. Normalized gate threshold voltage vs temperature

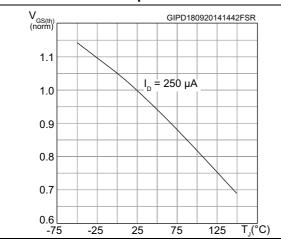


Figure 11. Capacitance variations

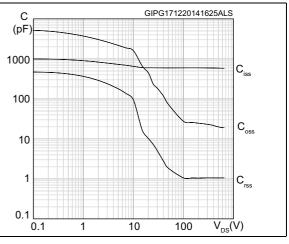


Figure 13. Normalized on-resistance vs temperature

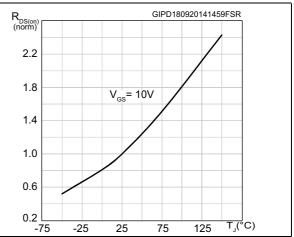
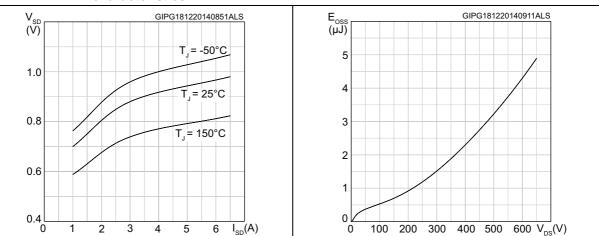



Figure 14. Source-drain diode forward characteristics

Figure 15. Output capacitance stored energy

3 Test circuits

Figure 16. Switching times test circuit for resistive load

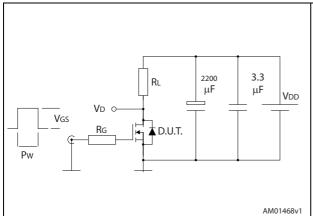
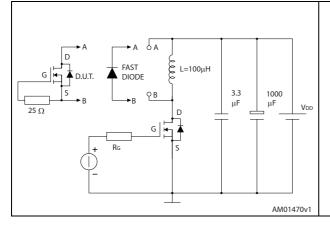
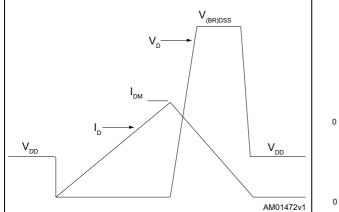
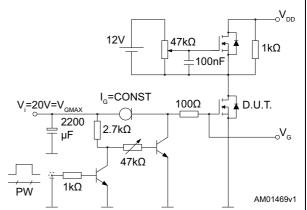
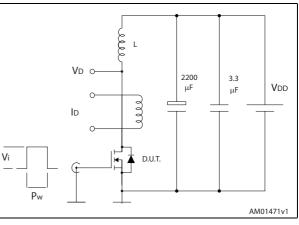
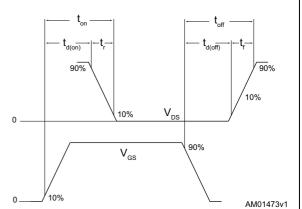
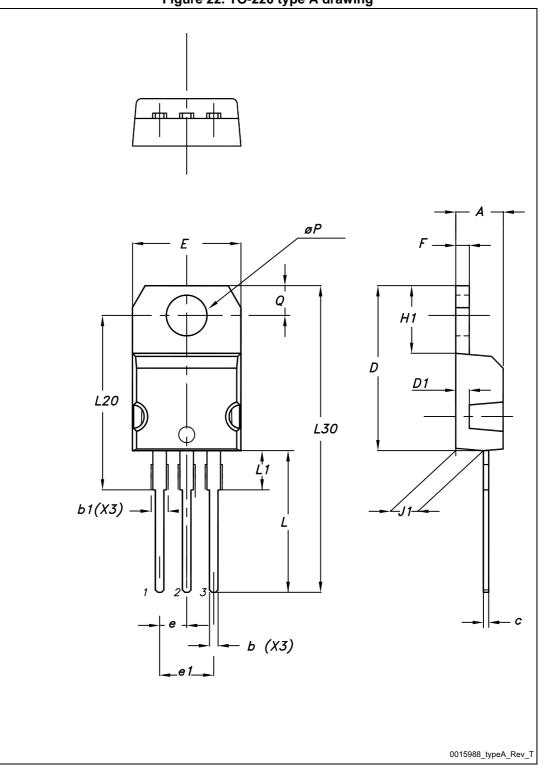


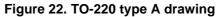
Figure 18. Test circuit for inductive load switching and diode recovery times


Figure 20. Unclamped inductive waveform


Figure 17. Gate charge test circuit


4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/16

4.1 TO-220, STP13N65M2

	Table 9. TO-220 type A mechanical data					
Dim.	mm					
	Min.	Тур.	Max.			
A	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
С	0.48		0.70			
D	15.25		15.75			
D1		1.27				
E	10		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	1.23		1.32			
H1	6.20		6.60			
J1	2.40		2.72			
L	13		14			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
ØP	3.75		3.85			
Q	2.65		2.95			

Table 9. TO-220 type A mechanical data

4.2 IPAK, STU13N65M2

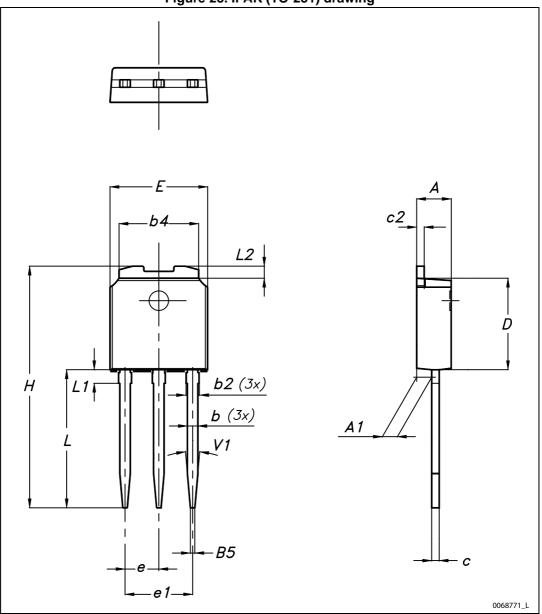


Figure 23. IPAK (TO-251) drawing

DIM	mm.			
DIM	min.	typ.	max.	
A	2.20		2.40	
A1	0.90		1.10	
b	0.64		0.90	
b2			0.95	
b4	5.20		5.40	
B5		0.30		
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
E	6.40		6.60	
е		2.28		
e1	4.40		4.60	
Н		16.10		
L	9.00		9.40	
L1	0.80		1.20	
L2		0.80	1.00	
V1		10°		

5 Revision history

Date	Revision	Changes
19-Dec-2014	1	First release.

Table 11. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

