MPSA14 is a Preferred Device # **Darlington Transistors** # **NPN Silicon** #### **Features** • Pb-Free Packages are Available* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------|-------------| | Collector - Emitter Voltage | V _{CES} | 30 | Vdc | | Collector - Base Voltage | V _{CBO} | 30 | Vdc | | Emitter-Base Voltage | V _{EBO} | 10 | Vdc | | Collector Current – Continuous | IC | 500 | mAdc | | Total Device Dissipation @ T _A = 25°C Derate above 25°C | P _D | 625
5.0 | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 1.5
12 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|-------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 200 | °C/mW | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 83.3 | °C/mW | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. # ON Semiconductor® http://onsemi.com ### **MARKING DIAGRAM** x = 3 or 4 A = Assembly Location Y = Year WW = Work Week = Pb-Free Package (Note: Microdot may be in either location) ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. **Preferred** devices are recommended choices for future use and best overall value. 1 ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |--|--------------------------------------|----------------------|-------------------------------------|------------------|------| | OFF CHARACTERISTICS | | | | | | | Collector – Emitter Breakdown Voltage ($I_C = 100 \mu Adc, I_B = 0$) | | $V_{(BR)CES}$ | 30 | - | Vdc | | Collector Cutoff Current
(V _{CB} = 30 Vdc, I _E = 0) | | I _{CBO} | - | 100 | nAdc | | Emitter Cutoff Current
(V _{EB} = 10 Vdc, I _C = 0) | | I _{EBO} | - | 100 | nAdc | | ON CHARACTERISTICS (Note 1) | | | | | | | DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$) | MPSA13
MPSA14
MPSA13
MPSA14 | h _{FE} | 5,000
10,000
10,000
20,000 | -
-
-
- | - | | Collector – Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc) | | V _{CE(sat)} | - | 1.5 | Vdc | | Base – Emitter On Voltage
(I _C = 100 mAdc, V _{CE} = 5.0 Vdc) | | V _{BE(on)} | - | 2.0 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | Current–Gain – Bandwidth Product (Note 2)
(I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz) | | f _T | 125 | _ | MHz | ^{1.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$; Duty Cycle $\leq 2.0\%$. # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|--------------------|-----------------------| | MPSA13 | TO-92 | 5000 Units / Bulk | | MPSA13G | TO-92
(Pb-Free) | 5000 Units / Bulk | | MPSA13RLRA | TO-92 | 2000 / Tape & Reel | | MPSA13RLRAG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPSA13RLRMG | TO-92
(Pb-Free) | 2000 / Ammo Pack | | MPSA13RLRPG | TO-92
(Pb-Free) | 2000 / Ammo Pack | | MPSA13ZL1G | TO-92
(Pb-Free) | 2000 / Ammo Pack | | MPSA14G | TO-92
(Pb-Free) | 5000 Units / Bulk | | MPSA14RLRAG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPSA14RLRPG | TO-92
(Pb-Free) | 2000 / Ammo Pack | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{2.} $f_T = |h_{fe}| \cdot f_{test}$. **Figure 1. Transistor Noise Model** ### **NOISE CHARACTERISTICS** $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$ Figure 2. Noise Voltage Figure 4. Total Wideband Noise Voltage Figure 5. Wideband Noise Figure #### SMALL-SIGNAL CHARACTERISTICS Figure 6. Capacitance Figure 7. High Frequency Current Gain Figure 8. DC Current Gain Figure 9. Collector Saturation Region Figure 10. "On" Voltages **Figure 11. Temperature Coefficients** Figure 12. Thermal Response Figure 13. Active Region Safe Operating Area **Design Note: Use of Transient Thermal Resistance Data** TO-92 (TO-226) CASE 29-11 **ISSUE AM** **DATE 09 MAR 2007** STRAIGHT LEAD **BULK PACK** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - DIMENSIONING AND IDECRANGING FER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. - LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | ٧ | 0.135 | | 3.43 | | **BENT LEAD** TAPE & REEL AMMO PACK - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | 4.45 | 5.20 | | | | | | В | 4.32 | 5.33 | | | | | | С | 3.18 | 4.19 | | | | | | D | 0.40 | 0.54 | | | | | | G | 2.40 | 2.80 | | | | | | J | 0.39 | 0.50 | | | | | | K | 12.70 | | | | | | | N | 2.04 | 2.66 | | | | | | P | 1.50 | 4.00 | | | | | | R | 2.93 | | | | | | | V | 3.43 | | | | | | # **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42022B | Electronic versions are uncontrolle accessed directly from the Document versions are uncontrolled except versions. | | | |------------------|---------------------------|--|-------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | | ' ' | | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | | | DESCRIPTION: | TO-92 (TO-226) | | PAGE 1 OF 3 | | ## **TO-92 (TO-226)** CASE 29-11 ISSUE AM # **DATE 09 MAR 2007** | STYLE 1:
PIN 1.
2.
3. | EMITTER
BASE
COLLECTOR | STYLE 2:
PIN 1.
2.
3. | BASE
EMITTER
COLLECTOR | STYLE 3:
PIN 1.
2.
3. | ANODE
ANODE
CATHODE | STYLE 4:
PIN 1.
2.
3. | CATHODE
CATHODE
ANODE | | | |---------------------------------|---------------------------------------|---------------------------------|------------------------------|---------------------------------|-------------------------------------|---------------------------------|---------------------------------------|---------------------------------|-----------------------------------| | STYLE 6:
PIN 1.
2.
3. | GATE
SOURCE & SUBSTRATE
DRAIN | STYLE 7:
PIN 1.
2.
3. | SOURCE
DRAIN
GATE | STYLE 8:
PIN 1.
2.
3. | DRAIN
GATE
SOURCE & SUBSTRATE | STYLE 9:
PIN 1.
2.
3. | BASE 1
EMITTER
BASE 2 | STYLE 10:
PIN 1.
2.
3. | CATHODE | | 2.
3. | CATHODE & ANODE CATHODE | 2.
3. | GATE
MAIN TERMINAL 2 | 2.
3. | | 2.
3. | COLLECTOR
BASE | 2.
3. | CATHODE
ANODE 2 | | STYLE 16:
PIN 1.
2.
3. | ANODE
GATE
CATHODE | STYLE 17:
PIN 1.
2.
3. | COLLECTOR
BASE
EMITTER | STYLE 18:
PIN 1.
2.
3. | ANODE
CATHODE
NOT CONNECTED | STYLE 19:
PIN 1.
2.
3. | GATE
ANODE
CATHODE | STYLE 20:
PIN 1.
2.
3. | NOT CONNECTED
CATHODE
ANODE | | PIN 1.
2. | COLLECTOR
EMITTER
BASE | PIN 1 | SOURCE | PIN 1. | GATE
SOURCE
DRAIN | PIN 1. | EMITTER
COLLECTOR/ANODE
CATHODE | PIN 1. | MT 1 | | | V _{CC}
GROUND 2
OUTPUT | STYLE 27:
PIN 1.
2.
3. | MT
SUBSTRATE
MT | STYLE 28:
PIN 1.
2.
3. | CATHODE
ANODE
GATE | STYLE 29:
PIN 1.
2.
3. | NOT CONNECTED
ANODE
CATHODE | STYLE 30:
PIN 1.
2.
3. | DRAIN
GATE
SOURCE | | 2. | GATE
DRAIN
SOURCE | 2. | COLLECTOR | STYLE 33:
PIN 1.
2.
3. | INPUT | 2. | INPUT
GROUND
LOGIC | STYLE 35:
PIN 1.
2.
3. | GATE | | D | OCUMENT NUMBER: | 98ASB42022B | Electronic versions are uncontrolled except when | | | |---|-----------------|---------------------------|--|--|--| | | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document Repository. Printed
versions are uncontrolled except when stamped | | | | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | | | | DESCRIPTION: | TO-92 (TO-226) | PAGE 2 OF 3 | | | ON Semiconductor® # DOCUMENT NUMBER: 98ASB42022B PAGE 3 OF 3 | ISSUE | REVISION | DATE | |-------|---|-------------| | AM | ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA. | 09 MAR 2007 | ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase # PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative