

# STW20N90K5

### Datasheet

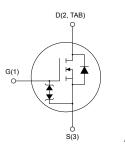
## N-channel 900 V, 0.21 Ω typ., 20 A MDmesh™ K5 Power MOSFET in a TO-247 package

### **Features**

| Order code                                   | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | ۱ <sub>D</sub> |  |  |  |
|----------------------------------------------|-----------------|--------------------------|----------------|--|--|--|
| STW20N90K5                                   | 900 V           | 0.25 Ω                   | 20 A           |  |  |  |
| Industry's lowest R <sub>DS(on)</sub> x area |                 |                          |                |  |  |  |

- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

### **Applications**


Switching applications

### **Description**

This very high voltage N-channel Power MOSFET is designed using MDmesh<sup>™</sup> K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.



TO-247



| Product status link |
|---------------------|
| STW20N90K5          |
|                     |

| Product summary |            |  |  |  |  |
|-----------------|------------|--|--|--|--|
| Order code      | STW20N90K5 |  |  |  |  |
| Marking         | 20N90K5    |  |  |  |  |
| Package         | TO-247     |  |  |  |  |
| Packing         | Tube       |  |  |  |  |

# 1 Electrical ratings

57

| Symbol                        | Parameter                                             | Value      | Unit  |
|-------------------------------|-------------------------------------------------------|------------|-------|
| V <sub>GS</sub>               | Gate-source voltage                                   | ±30        | V     |
| I <sub>D</sub>                | Drain current (continuous) at T <sub>C</sub> = 25 °C  | 20         | А     |
| I <sub>D</sub>                | Drain current (continuous) at T <sub>C</sub> = 100 °C | 13         | А     |
| I <sub>D</sub> <sup>(1)</sup> | Drain current (pulsed)                                | 80         | А     |
| P <sub>TOT</sub>              | Total dissipation at $T_C$ = 25 °C                    |            | W     |
| dv/dt (2)                     | Peak diode recovery voltage slope                     | 4.5        | V/ns  |
| dv/dt (3)                     | MOSFET dv/dt ruggedness                               | 50         | V/115 |
| Tj                            | Operating junction temperature range                  | -55 to 150 | °C    |
| T <sub>stg</sub>              | Storage temperature range                             | -55 10 150 | C     |

#### Table 1. Absolute maximum ratings

1. Pulse width limited by safe operating area

2.  $I_{SD} \leq$  20 A, di/dt  $\leq$  100 A/µs;  $V_{DS}$  peak  $\leq$   $V_{(BR)DSS}$ ,  $V_{DD}$ = 450 V

3.  $V_{DS} \leq 720 V$ 

#### Table 2. Thermal data

| Symbol                | Parameter                           | Value | Unit |
|-----------------------|-------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 0.5   | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient | 50    | °C/W |

#### Table 3. Avalanche characteristics

| Symbol          | Parameter                                                                                                                  | Value | Unit |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|-------|------|
| I <sub>AR</sub> | Avalanche current, repetitive or not repetitive (pulse width limited by $\mathrm{T}_{\mathrm{jmax}})$                      | 6.5   | А    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting T <sub>j</sub> = 25 °C, I <sub>D</sub> = I <sub>AR</sub> , V <sub>DD</sub> = 50 V) | 500   | mJ   |

### 2 Electrical characteristics

57

 $T_C$  = 25 °C unless otherwise specified

| Symbol               | Parameter                            | Test conditions                                | Min. | Тур. | Max. | Unit |
|----------------------|--------------------------------------|------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage       | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 1 mA   | 900  |      |      | V    |
|                      |                                      | $V_{GS}$ = 0 V, $V_{DS}$ = 900 V               |      |      | 1    | μA   |
| I <sub>DSS</sub>     | Zero gate voltage drain<br>current   | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 900 V |      |      | 50   |      |
|                      |                                      | T <sub>C</sub> = 125 °C <sup>(1)</sup>         |      |      | 50   | μA   |
| I <sub>GSS</sub>     | Gate body leakage current            | $V_{DS}$ = 0 V, $V_{GS}$ = ±20 V               |      |      | ±10  | μA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage               | $V_{DS}$ = $V_{GS}$ , $I_D$ = 100 $\mu$ A      | 3    | 4    | 5    | V    |
| R <sub>DS(on)</sub>  | Static drain-source<br>on-resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 10 A  |      | 0.21 | 0.25 | Ω    |

#### Table 4. On/off-state

1. Defined by design, not subject to production test

#### Table 5. Dynamic

| Symbol                 | Parameter                                | Test conditions                                                                          | Min. | Тур. | Max. | Unit |
|------------------------|------------------------------------------|------------------------------------------------------------------------------------------|------|------|------|------|
| C <sub>iss</sub>       | Input capacitance                        |                                                                                          | -    | 1500 | -    | pF   |
| C <sub>oss</sub>       | Output capacitance                       | V <sub>DS</sub> = 100 V, f = 1 MHz,<br>V <sub>GS</sub> = 0 V                             | -    | 120  | -    | pF   |
| C <sub>rss</sub>       | Reverse transfer capacitance             |                                                                                          | -    | 1    | -    | pF   |
| C <sub>o(er)</sub> (1) | Equivalent capacitance<br>energy related | y = 0 y y = 0 to 720 y                                                                   | -    | 78   | -    | pF   |
| C <sub>o(tr)</sub> (2) | Equivalent capacitance time related      | $V_{GS} = 0 V, V_{DS} = 0 \text{ to } 720 V$                                             |      | 220  | -    | pF   |
| Rg                     | Intrinsic gate resistance                | f = 1 MHz , I <sub>D</sub> = 0 A                                                         | -    | 3.7  | -    | Ω    |
| Qg                     | Total gate charge                        | V <sub>DD</sub> = 720 V, I <sub>D</sub> = 20 A                                           | -    | 40   | -    | nC   |
| Q <sub>gs</sub>        | Gate-source charge                       | V <sub>GS</sub> = 0 to 10 V<br>(see Figure 14. Test circuit for<br>gate charge behavior) | -    | 14   | -    | nC   |
| Q <sub>gd</sub>        | Gate-drain charge                        |                                                                                          | -    | 17   | -    | nC   |

1.  $C_{o(er)}$  is a constant capacitance value that gives the same stored energy as  $C_{oss}$  while  $V_{DS}$  is rising from 0 to 80%  $V_{DSS}$ .

2.  $C_{o(tr)}$  is a constant capacitance value that gives the same charging time as  $C_{oss}$  while  $V_{DS}$  is rising from 0 to 80%  $V_{DSS}$ .

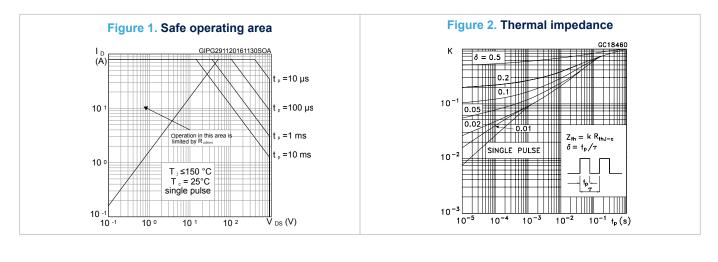
| Symbol              | Parameter           | Test conditions                                                 | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|-----------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | V <sub>DD</sub> = 450 V, I <sub>D</sub> = 10 A,                 | -    | 20.2 | -    | ns   |
| t <sub>r</sub>      | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$                            | -    | 13.5 | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | (see Figure 13. Test circuit for resistive load switching times | -    | 64.7 | -    | ns   |
| t <sub>f</sub>      | Fall time           | and Figure 18. Switching time waveform)                         | -    | 16   | -    | ns   |

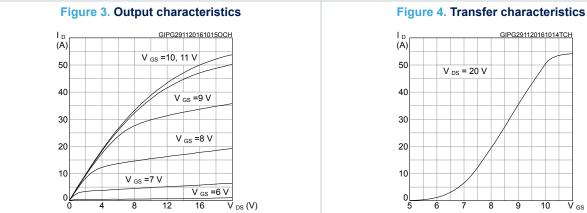
#### Table 6. Switching times

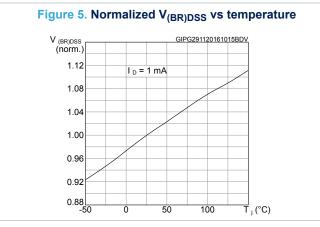
| Symbol                          | Parameter                     | Test conditions                                                                                                   | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                                                                   | -    |      | 20   | А    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                                                   | -    |      | 80   | А    |
| $V_{SD}\ ^{(2)}$                | Forward on voltage            | I <sub>SD</sub> = 20 A, V <sub>GS</sub> = 0 V                                                                     | -    |      | 1.5  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 20 A, di/dt = 100 A/μs,                                                                         | -    | 517  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | $V_{DD} = 60 V$                                                                                                   | -    | 11.4 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 15. Test circuit for inductive load switching and diode recovery times)                               | -    | 44   |      | A    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 20 A, di/dt = 100 A/μs                                                                          | -    | 674  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | $V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$                                                           | -    | 14   |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | <ul> <li>(see Figure 15. Test circuit for -<br/>inductive load switching and<br/>diode recovery times)</li> </ul> | -    | 41.6 |      | А    |

#### Table 7. Source-drain diode

1. Pulse width limited by safe operating area

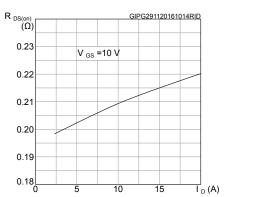

2. Pulsed: pulse duration = 300 µs, duty cycle 1.5%

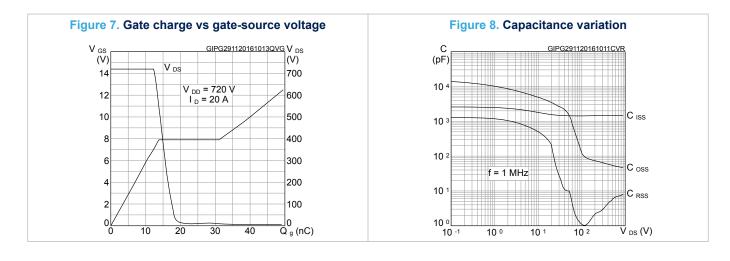

#### Table 8. Gate-source Zener diode


| Symbol                | Parameter                     | Test conditions                | Min | Тур | Max. | Unit |
|-----------------------|-------------------------------|--------------------------------|-----|-----|------|------|
| V <sub>(BR) GSO</sub> | Gate-source breakdown voltage | $I_{GS}$ = ± 1 mA, $I_D$ = 0 A | 30  | -   | -    | V    |

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

#### **Electrical characteristics curves** 2.1





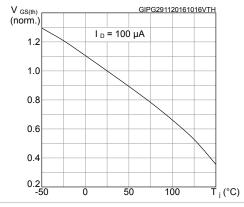
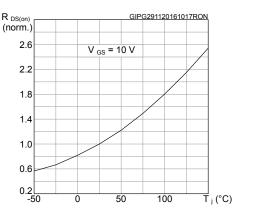
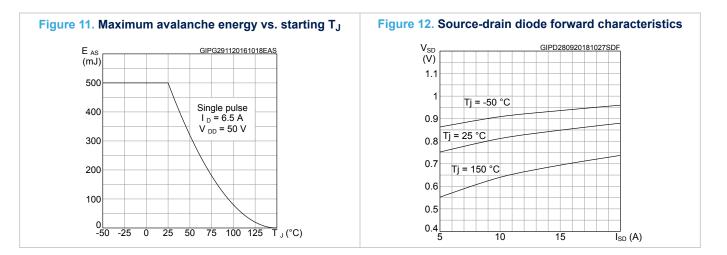

#### Figure 6. Static drain-source on-resistance

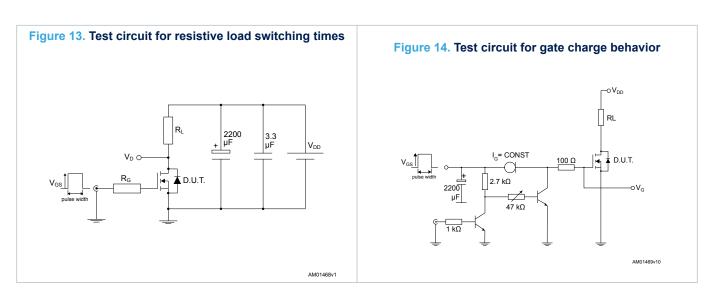
V<sub>GS</sub>(V)

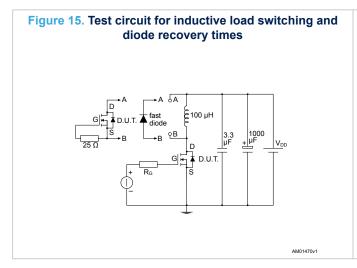


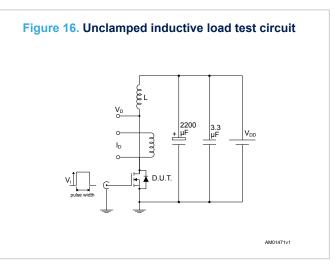


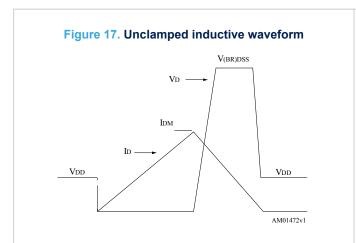
# Figure 9. Normalized gate threshold voltage vs temperature

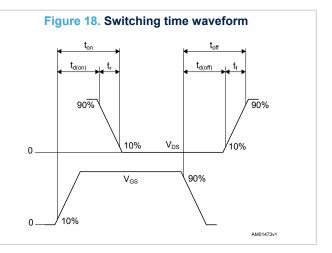






Figure 10. Normalized on-resistance vs temperature



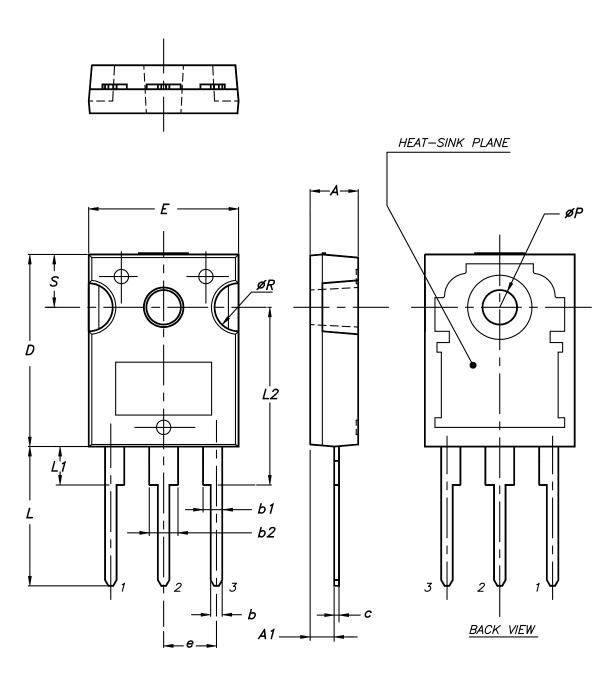


## 3 Test circuits












# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: www.st.com. ECOPACK<sup>®</sup> is an ST trademark.

### 4.1 TO-247 package information

Figure 19. TO-247 package outline



0075325\_9

| Dim.  |       | mm    |       |
|-------|-------|-------|-------|
| Dini. | Min.  | Тур.  | Max.  |
| A     | 4.85  |       | 5.15  |
| A1    | 2.20  |       | 2.60  |
| b     | 1.0   |       | 1.40  |
| b1    | 2.0   |       | 2.40  |
| b2    | 3.0   |       | 3.40  |
| С     | 0.40  |       | 0.80  |
| D     | 19.85 |       | 20.15 |
| E     | 15.45 |       | 15.75 |
| е     | 5.30  | 5.45  | 5.60  |
| L     | 14.20 |       | 14.80 |
| L1    | 3.70  |       | 4.30  |
| L2    |       | 18.50 |       |
| ØP    | 3.55  |       | 3.65  |
| ØR    | 4.50  |       | 5.50  |
| S     | 5.30  | 5.50  | 5.70  |

### Table 9. TO-247 package mechanical data

# **Revision history**

#### Table 10. Document revision history

| Date        | Revision | Changes                                                                                                                                        |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-May-2016 | 1        | First release.                                                                                                                                 |
| 01-Dec-2016 | 2        | Modified: title and R <sub>DS(on)</sub> value in cover page                                                                                    |
|             |          | Modified: Table 5. Avalanche characteristics Table 6. On/off-state, Table 7. Dynamic, Table 8. Switching times and Table 9. Source-drain diode |
|             |          | Added Section 2.1 Electrical characteristics curves                                                                                            |
|             |          | Modified: Section 3 Test circuits                                                                                                              |
|             |          | Datasheet promoted from preliminary data to production data                                                                                    |
|             |          | Minor text changes                                                                                                                             |
| 01-Oct-2018 | 3        | Removed maturity status indication from cover page.                                                                                            |
|             |          | Updated Figure 12. Source-drain diode forward characteristics.                                                                                 |
|             |          | Minor text changes.                                                                                                                            |

## Contents

| 1   | Electrical ratings         |                                     |     |  |  |
|-----|----------------------------|-------------------------------------|-----|--|--|
| 2   | Electrical characteristics |                                     |     |  |  |
|     | 2.1                        | Electrical characteristics (curves) | . 5 |  |  |
| 3   | Test                       | circuits                            | .7  |  |  |
| 4   | Package information        |                                     |     |  |  |
|     | 4.1                        | TO-247 package information          | . 8 |  |  |
| Rev | ision h                    | nistory                             | 11  |  |  |



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved