
N-channel 1200 V, 0.62 Ω typ.,12 A MDmesh K5 Power MOSFETs in H²PAK-2, TO-220, TO-247 and TO-247 long leads

TAB H^2 PAK-2 I^2 I^2 I^2

Figure 1: Internal schematic diagram

Features

Order codes	V _{DS}	R _{DS(on)} max.	ID	Ртот
STH12N120K5-2		0.00.0	12 A	050.14
STP12N120K5	1200 V 0.69 Ω			
STW12N120K5		0.09 12		250 W
STWA12N120K5				

Datasheet - production data

- Worldwide best FOM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

These very high voltage N-channel Power MOSFETs are designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STH12N120K5-2	- 12N120K5 -	H ² PAK-2	Tape and reel
STP12N120K5		TO-220	
STW12N120K5		TO-247	Tube
STWA12N120K5		TO-247 long leads	

April 2015

DocID022133 Rev 4

This is information on a product in full production.

Contents

Contents 1 2 Electrical characteristics4 2.1 3 Test circuits9 4 Package information10 4.1 H²PAK-2 package information.....11 4.2 TO-220 type A package information......14 TO-247 package information......16 4.3 4.4 Revision history20 5

2/21

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
ID	Drain current at $T_c = 25 \text{ °C}$	12	А
ID	Drain current at T _C = 100 °C	7.6	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	48	А
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	250	W
I _{AR} ⁽²⁾	Max current during repetitive or single pulse avalanche	4	А
E _{AS} ⁽³⁾	Single pulse avalanche energy	215	mJ
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽⁵⁾	MOSFET dv/dt ruggedness	50	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	- 55 to 150	°C

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{\rm (2)} \rm Pulse$ width limited by $\rm T_{\rm Jmax.}$

 $^{(3)}\text{Starting }\text{T}_\text{J}$ = 25 °C, I_D=I_AS, V_DD= 50 V

 $^{(4)}I_{SD}$ \leq 12 A, di/dt \leq 100 A/µs, V_{Peak} \leq V_{(BR)DSS}

 $^{(5)}V_{DS} \le 960 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	H ² PAK-2	TO-220	TO-247 TO-247 long leads	Unit
R _{thj-case}	Thermal resistance junction-case max	0.5		°C/W	
$R_{thj-amb}$	Thermal resistance junction-amb max	62.5		50	°C/W
$R_{thj-pcb}$	Thermal resistance junction-pcb max	30			°C/W

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	1200			V
	Zara sata valtasa drain	$V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{ V}$			1	μA
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0, V _{DS} = 1200 V, Tc = 125 °C			50	μA
I _{GSS}	Gate body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V_{GS} = 10 V, I _D = 6 A		0.62	0.69	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1370	-	pF
C _{oss}	Output capacitance	$V_{GS} = 0 V, V_{DS} = 100 V,$	-	110	-	pF
C _{rss}	Reverse transfer capacitance	f = 1 MHz	-	0.6	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance, time-related		-	128	-	pF
C _{o(er)} (2)	Equivalent capacitance, energy-related	$V_{GS} = 0, V_{DS} = 0$ to 960 V	-	42	-	pF
R_G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	3	-	Ω
Q_g	Total gate charge	$V_{DD} = 960 \text{ V}, I_D = 12 \text{ A}$	-	44.2	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	7.3	-	nC
Q _{gd}	Gate-drain charge	(see Figure 18: "Gate charge test circuit")	-	30	-	nC

Table 5: Dynamic

Notes:

 $^{(1)}$ Time-related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}\mathsf{E}\mathsf{nergy}\mathsf{-related}$ is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Electrical characteristics

	Table 6: Switching times							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	$V_{DD} = 600 \text{ V}, \text{ I}_{D} = 6 \text{ A},$	-	23	-	ns		
tr	Rise time	$R_{G} = 4.7 \Omega, V_{GS} = 10 V$	-	11	-	ns		
t _{d(off)}	Turn-off delay time	(see Figure 20: "Unclamped	-	68.5	-	ns		
t _f	Fall time	inductive load test circuit")	-	18.5	-	ns		

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	А
I _{SDM}	Source-drain current (pulsed)		-		48	А
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 12 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 12 \text{ A}, V_{DD} = 60 \text{ V}$	-	630		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs, (see Figure 19: "Test circuit for inductive load switching	-	12.6		μC
I _{RRM}	Reverse recovery current	and diode recovery times")	-	40		А
t _{rr}	Reverse recovery time	I _{SD} = 12 A,V _{DD} = 60 V di/dt = 100 A/μs,	-	892		ns
Q _{rr}	Reverse recovery charge	Tj = 150 °C (see <i>Figure 19: "Test circuit</i>	-	15.6		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	35		А

Notes:

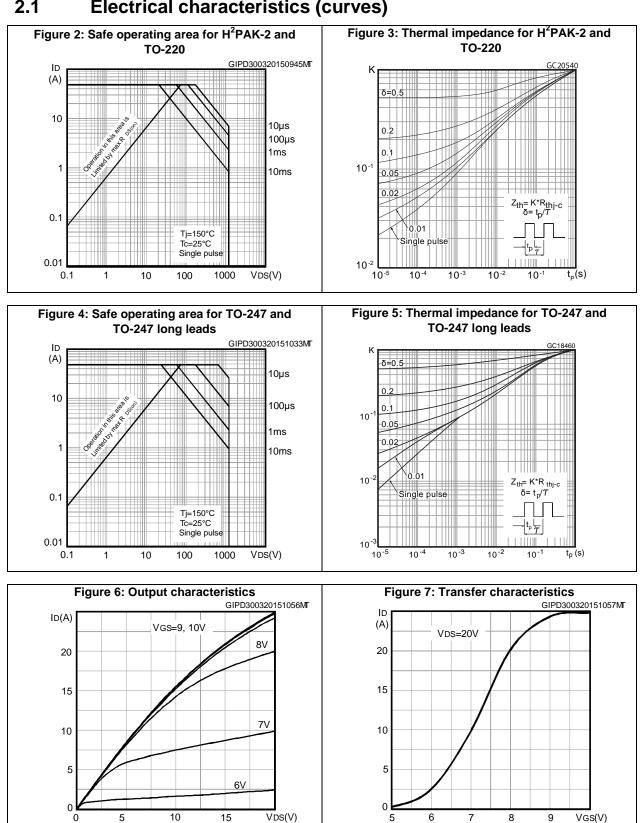
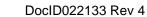
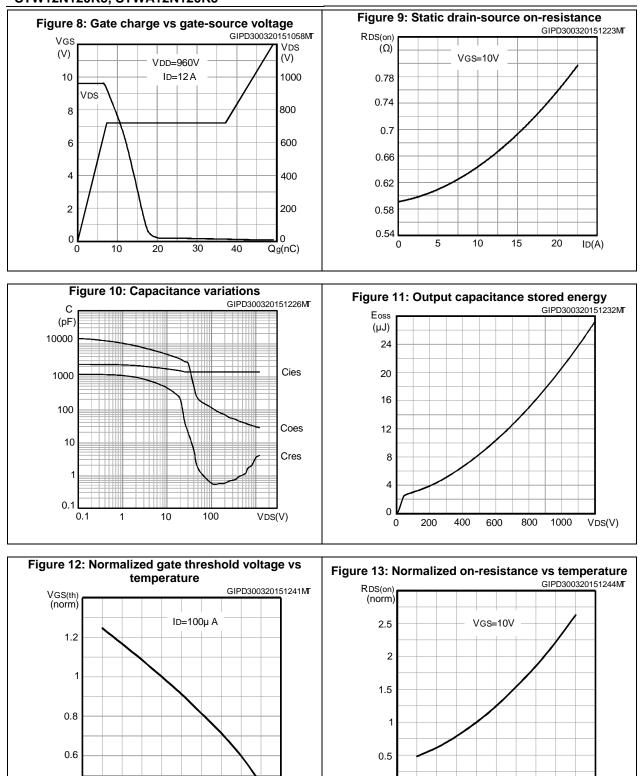

⁽¹⁾Pulsed: pulse duration = 300µs, duty cycle 1.5%

Table 8: Gate-source Zener diode


Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30		-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance the ESD capability of the device. The Zener voltage is appropriate for efficient and cost-effective intervention to protect the device integrity. These integrated Zener diodes thus eliminate the need for external components.


Electrical characteristics (curves) 2.1

6/21

Electrical characteristics

DocID022133 Rev 4

TJ(°C)

0

-75

-25

25

75

125

7/21

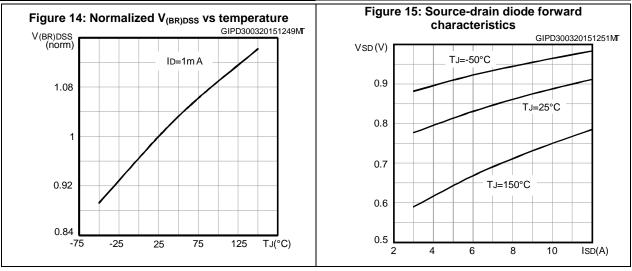
TJ(°C)

0.4

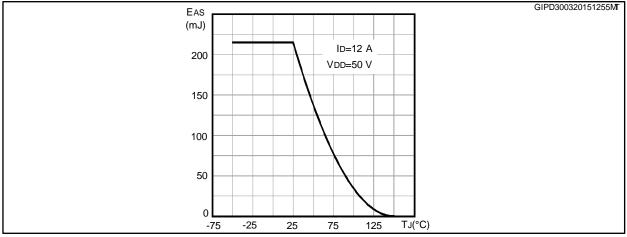
57

-75

-25

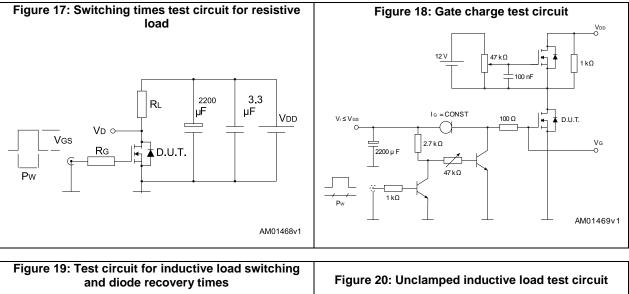

25

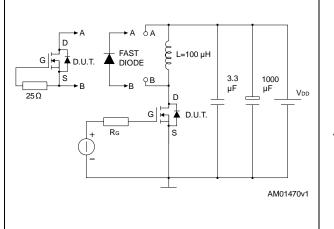
75

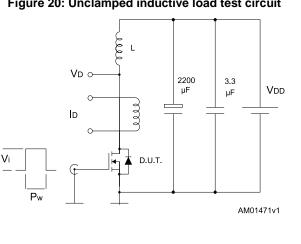

125

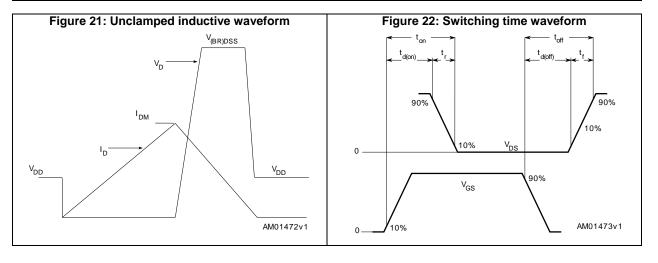
Electrical characteristics

STH12N120K5-2, STP12N120K5, STW12N120K5, STWA12N120K5









3 Test circuits

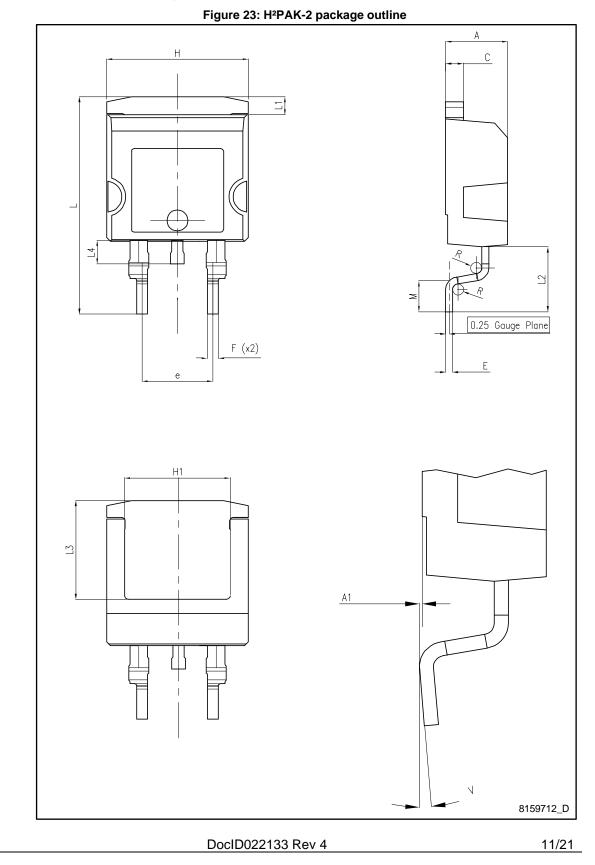
57

DocID022133 Rev 4

9/21

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.


10/21

DocID022133 Rev 4

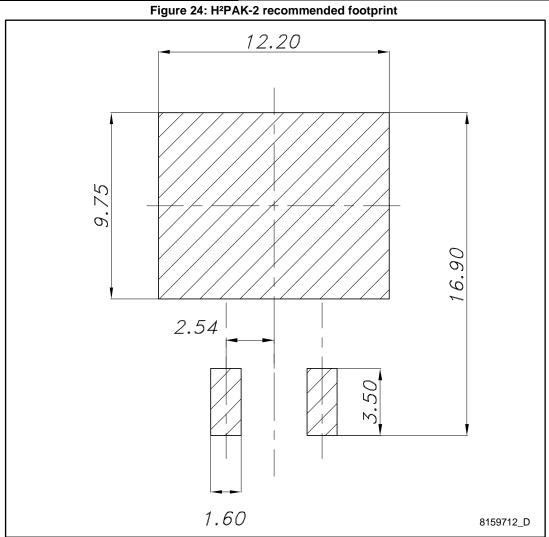
Package information

4.1 H²PAK-2 package information

57

Package information

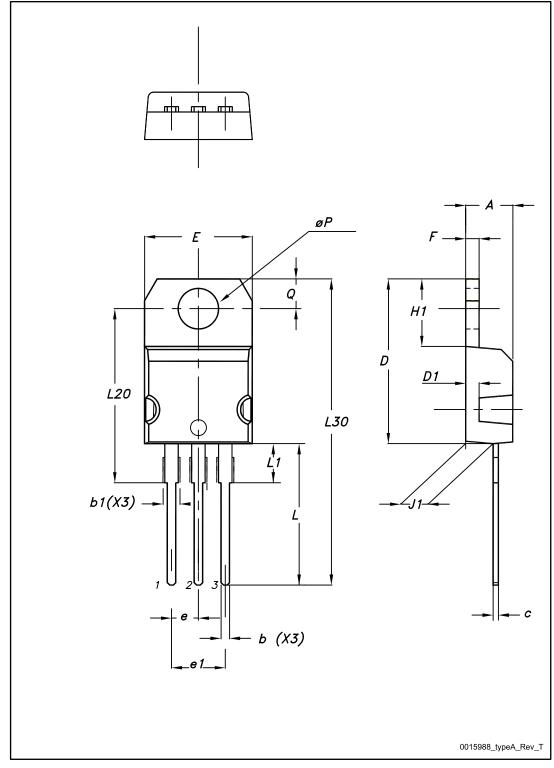
STH12N120K5-2, STP12N120K5, STW12N120K5, STWA12N120K5


Table 9: H²PAK-2 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
E	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
М	2.6		2.9
R	0.20		0.60
V	0°		8°

12/21

DocID022133 Rev 4

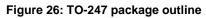


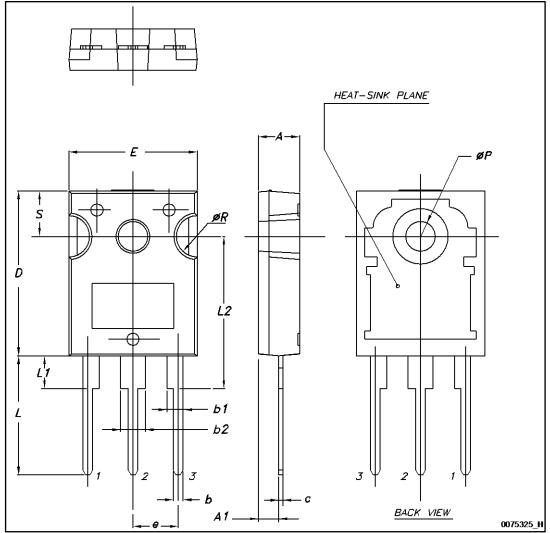
57

4.2 TO-220 type A package information

Figure 25: TO-220 type A package outline

DocID022133 Rev 4


Package information


	Table 10: TO-220 ty	pe A mechanical data	
Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95

4.3

TO-247 package information

DocID022133 Rev 4

57

Package information

	Table 11: TO-247 mechanical data						
Dim		mm.					
Dim.	Min.	Тур.	Max.				
A	4.85		5.15				
A1	2.20		2.60				
b	1.0		1.40				
b1	2.0		2.40				
b2	3.0		3.40				
С	0.40		0.80				
D	19.85		20.15				
E	15.45		15.75				
е	5.30	5.45	5.60				
L	14.20		14.80				
L1	3.70		4.30				
L2		18.50					
ØP	3.55		3.65				
ØR	4.50		5.50				
S	5.30	5.50	5.70				

4.4

TO-247 long leads package information

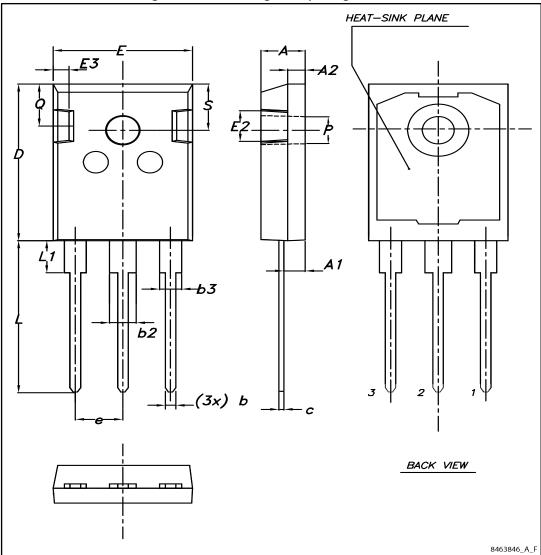


Figure 27: TO-247 long leads package outline

DocID022133 Rev 4

STH12N120K5-2, STP12N120K5, STW12N120K5, STWA12N120K5 Table 12: TO-247 long leads mechanical data

Package information

Table 12: TO-247 long leads mechanical data				
Dim.	mm.			
	Min.	Тур.	Max.	
A	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.26	
b2			3.25	
b3			2.25	
С	0.59		0.66	
D	20.90	21.00	21.10	
E	15.70	15.80	15.90	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	5.34	5.44	5.54	
L	19.80	19.92	20.10	
L1			4.30	
Р	3.50	3.60	3.70	
Q	5.60		6.00	
S	6.05	6.15	6.25	

5 Revision history

Table 13: Document revision history

Date	Revision	Changes	
23-Aug-2011	1	First release.	
17-Jan-2013	2	 Minor text changes Added: H²PAK package The part number STB12N120K5 has been moved to a separate datasheet Updated: Updated: mechanical data for TO-247 package 	
16-May-2014	3	 The part numbers STFW12N120K5 has been moved to a separate datasheet Added: TO-247 long leads package Modified: I_{AR}, E_{AS}, dv/dt values in <i>Table 2: "Absolute maximum ratings"</i> Modified: the entire typical values in <i>Table 5: "Dynamic"</i>, <i>Table 6: "Switching times"</i> and <i>Table 7: "Source drain diode"</i> Added: Section 2.1: "Electrical characteristics (curves)" Minor text changes 	
08-Apr-2015	4	Updated title, silhouette and description in cover page. Updated <i>Table 4: "On/off states", Table 5: "Dynamic", Figure 9: "Static drain-source on-resistance"</i> and <i>Figure 10: "Capacitance variations".</i> Minor text change.	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

