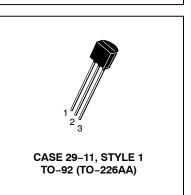
ON Semiconductor

Is Now

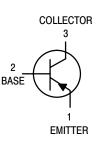
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs



Switching Transistor PNP Silicon


• This device is available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector – Emitter Voltage	V _{CEO}	-25	Vdc	
Collector – Emitter Voltage	V _{CES}	-25	Vdc	
Collector – Base Voltage	V _{CBO}	-25	Vdc	
Emitter-Base Voltage	er – Base Voltage V _{EBO} –4.0		Vdc	
Collector Current — Continuous	۱ _C	-500	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

MPS3638A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}^{(1)}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage $(I_C = -100 \ \mu Adc, V_{BE} = 0)$	V _{(BR)CES}	-25		Vdc
Collector – Emitter Sustaining Voltage ⁽²⁾ ($I_C = -10$ mAdc, $I_B = 0$)	V _{CEO(sus)}	-25	_	Vdc
Collector – Base Breakdown Voltage $(I_{C} = -100 \ \mu Adc, I_{E} = 0)$	V _{(BR)CBO}	-25	_	Vdc
Emitter – Base Breakdown Voltage $(I_E = -100 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	-4.0		Vdc
Collector Cutoff Current $(V_{CE} = -15 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = -15 \text{ Vdc}, V_{BE} = 0, T_A = -65^{\circ}\text{C})$	I _{CES}		-0.035 -2.0	μAdc
Emitter Cutoff Current ($V_{EB} = -3.0 \text{ V}, I_C = 0$)	I _{EBO}		-35	nA
Base Current (V _{CE} = -15 Vdc, V _{BE} = 0)	Ι _Β		-0.035	μAdc

1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T _A =	= 25°C unless otherwise noted) (Continued)
--	--

	Symbol	Min	Max	Unit	
ON CHARACTERI	STICS ⁽²⁾				
DC Current Gain ($I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$) ($I_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$) ($I_C = -50 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}$) ($I_C = -300 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}$)		h _{FE}	80 100 100 20	 	
Collector – Emitter Sa ($I_C = -50 \text{ mAdc}, I_E$ ($I_C = -300 \text{ mAdc}, I_C$	₃ = -2.5 mAdc)	V _{CE(sat)}		-0.25 -1.0	Vdc
Base – Emitter Satura (I _C = –50 mAdc, I _E (I _C = –300 mAdc,	V _{BE(sat)}	-0.80	-1.1 -2.0	Vdc	
SMALL-SIGNAL (CHARACTERISTICS				
Current – Gain — Ba (V _{CE} = –3.0 Vdc, I	ndwidth Product _C = –50 mAdc, f = 100 MHz)	fT	150	_	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	10	pF
Input Capacitance (V _{EB} = -0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}		25	pF
Input Impedance (I _C = -10 mAdc, V		h _{ie}		2000	kΩ
Voltage Feedback R (I _C = -10 mAdc, V	atio _{CE} = −10 Vdc, f = 1.0 kHz)	h _{re}	_	15	X 10 ⁻⁴
Small–Signal Current Gain (I _C = −10 mAdc, V _{CE} = −10 Vdc, f = 1.0 kHz)		h _{fe}	100	_	-
Output Admittance ($I_C = -10$ mAdc, $V_{CE} = -10$ Vdc, f = 1.0 kHz)		h _{oe}		1.2	mmhos
SWITCHING CHAP	RACTERISTICS	· · ·			
Delay Time		t _d		20	ns
Rise Time	(V _{CC} = -10 Vdc, I _C = -300 mAdc, I _{B1} = -30 mAdc)	t _r		70	ns
Storage Time	$(V_{CC} = -10 \text{ Vdc}, I_C = -300 \text{ mAdc},$	t _s		140	ns
Fall Time	I _{B1} = –30 mAdc, I _{B2} = –30 mAdc)	t _f		70	ns

t_{on}

 $\mathsf{t}_{\mathsf{off}}$

75

170

ns

ns

2. Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2.0%.

Turn-On Time

Turn-Off Time

 $(I_{C} = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc})$

 $(I_{C} = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc}, I_{B2} = 30 \text{ mAdc})$

SWITCHING TIME EQUIVALENT TEST CIRCUIT

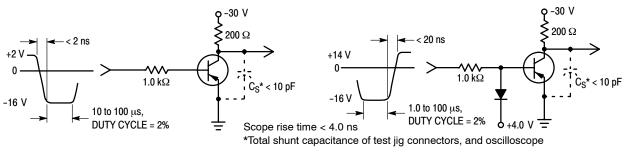


Figure 1. Turn-On Time

Figure 2. Turn–Off Time

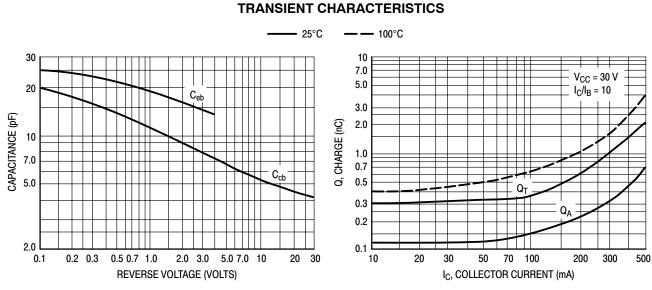


Figure 3. Capacitances

Figure 4. Charge Data

TRANSIENT CHARACTERISTICS (Continued)

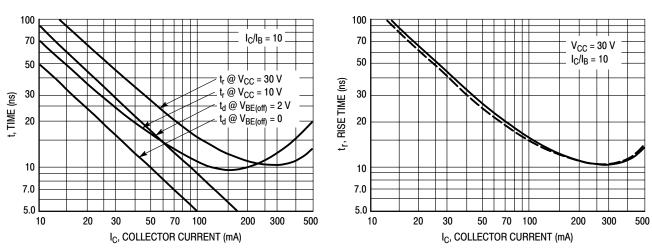


Figure 5. Turn-On Time

Figure 6. Rise Time

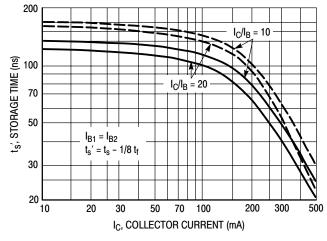
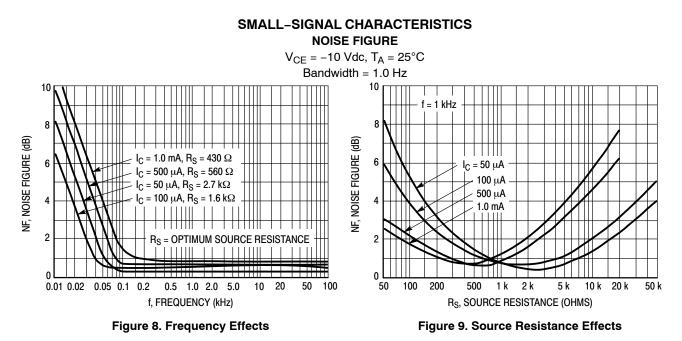



Figure 7. Storage Time

h PARAMETERS

$V_{CE}=-10~Vdc,\,f=1.0~kHz,\,T_{A}=25^{\circ}C$

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

selected from the 2N4402 line, and the same units were used to develop the correspondingly-numbered curves on each graph.

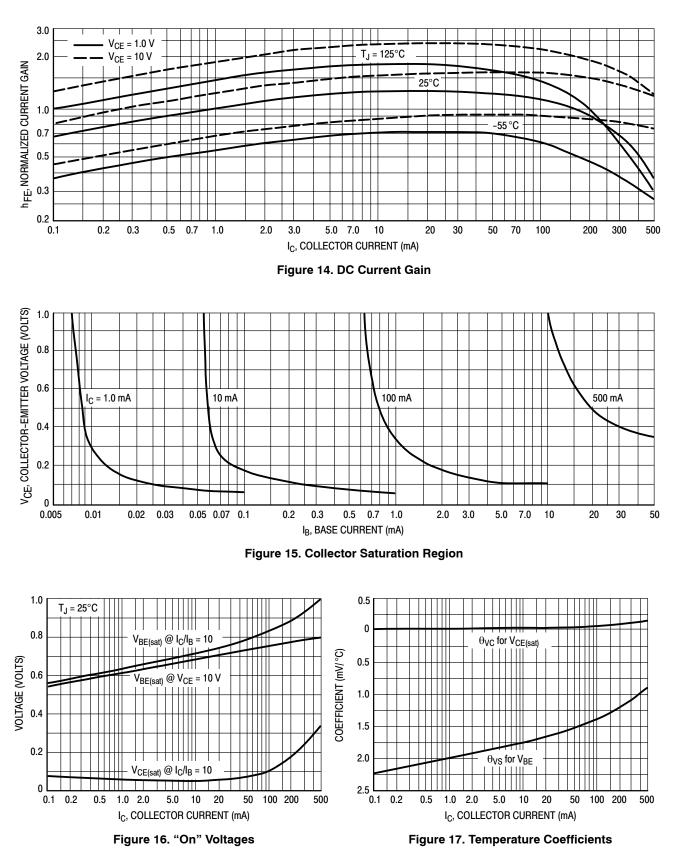
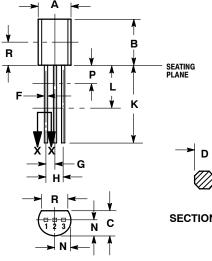



Figure 12. Voltage Feedback Ratio


Figure 13. Output Admittance

PACKAGE DIMENSIONS

CASE 029-11 (TO-226AA) ISSUE AD

STYLE 1: PIN 1. EMITTER 2. BASE COLLECTOR

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.
- 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
Η	0.095	0.105	2.42	2.66
-	0.018	0.024	0.46	0.61
Κ	0.500		12.70	
Г	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.