# **MOSFET** – Power, Dual, N-Channel, TSOP-6

# 20 V, 3.5 A

#### **Features**

- Low Threshold Levels, VGS(th) < 1.5 V
- Low Gate Charge (3.8 nC)
- Leading Edge Trench Technology of Low R<sub>DS(on)</sub>
- High Power and Current Handling Capability
- This is a Pb-Free Device

#### **Applications**

- DC-DC Converters (Buck and Boost Circuits)
- Low Side Load Switch
- Optimized for Battery and Load Management Applications in Portable Equipment Like Cell Phones, DSCs, Media Player, Etc
- Battery Charging and Protection Circuits

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

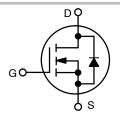
| Parameter                                                         |              | Symbol                | Value                             | Unit          |    |
|-------------------------------------------------------------------|--------------|-----------------------|-----------------------------------|---------------|----|
| Drain-to-Source Voltage                                           |              | $V_{DSS}$             | 20                                | V             |    |
| Gate-to-Source Vo                                                 | ltage        |                       | V <sub>GS</sub>                   | ±12           | V  |
| Continuous Drain Steady State T <sub>A</sub> = 25°C               |              | I <sub>D</sub>        | 3.0                               | Α             |    |
| Current (Note 1)                                                  |              | T <sub>A</sub> = 85°C |                                   | 2.2           |    |
| Continuous Drain<br>Current (Note 1)                              | t≤5s         | T <sub>A</sub> = 25°C | I <sub>D</sub>                    | 3.5           | Α  |
| Power Dissipation                                                 | Steady State | T <sub>A</sub> = 25°C | $P_{D}$                           | 0.9           | W  |
| (Note 1)                                                          | t ≤ 5 s      |                       |                                   | 1.1           |    |
| Pulsed Drain Current $t_p = 10 \mu s$                             |              | I <sub>DM</sub>       | 10                                | Α             |    |
| Operating Junction and Storage Temperature                        |              |                       | T <sub>J</sub> , T <sub>STG</sub> | –50 to<br>150 | °C |
| Source Current (Body Diode)                                       |              | I <sub>S</sub>        | 0.8                               | Α             |    |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |              | $T_L$                 | 260                               | °C            |    |

#### THERMAL RESISTANCE RATINGS

| Parameter                                   | Symbol          | Value | Unit |
|---------------------------------------------|-----------------|-------|------|
| Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 140   | °C/W |
| Junction-to-Ambient – t ≤ 5 s (Note 1)      | $R_{\theta JA}$ | 110   | °C/W |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).




## ON Semiconductor®

http://onsemi.com

#### **N-CHANNEL MOSFET**

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> Max | I <sub>D</sub> Max |
|----------------------|-------------------------|--------------------|
| 20 V                 | 70 mΩ @ 4.5 V           | 3.5 A              |
| 20 V                 | 100 mΩ @ 2.5 V          | 3.3 A              |

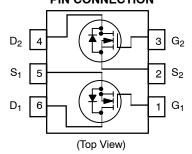


**N-CHANNEL MOSFET** 



TSOP-6 CASE 318G STYLE 13 MARKING DIAGRAM




DN = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

# PIN CONNECTION



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Downloaded from Arrow.com.

## $\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

| Characteristic                                               | Symbol                               | Test Co                                                                                      | ndition                  | Min | Тур  | Max | Unit  |
|--------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|-----|------|-----|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                                              |                          | -   | -    |     | -     |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                                |                          | 20  |      |     | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | I <sub>D</sub> = 250 μA,                                                                     | Ref to 25°C              |     | 12.5 |     | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V,                                                                       | T <sub>J</sub> = 25°C    |     |      | 1.0 |       |
|                                                              |                                      | $V_{DS} = 16 \text{ V}$                                                                      | T <sub>J</sub> = 125°C   |     |      | 10  | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V                                                                     | GS = ±12 V               |     |      | 100 | nA    |
| ON CHARACTERISTICS (Note 2)                                  |                                      |                                                                                              |                          |     |      |     | -     |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | V <sub>GS</sub> = V <sub>DS</sub> , I                                                        | D = 250 μA               | 0.5 |      | 1.5 | V     |
| Gate Threshold Temperature Coefficient                       | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                                              |                          |     | 3.28 |     | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 4.5 V                                                                      | I <sub>D</sub> = 3.5 A   |     | 41.7 | 70  |       |
|                                                              | , ,                                  | V <sub>GS</sub> = 2.5 V                                                                      | I <sub>D</sub> = 2.8 A   |     | 58   | 100 | mΩ    |
| Forward Transconductance                                     | 9FS                                  | V <sub>DS</sub> = 5.0 V                                                                      | , I <sub>D</sub> = 3.5 A |     | 6.2  |     | S     |
| CHARGES, CAPACITANCES AND GATE F                             | RESISTANCE                           |                                                                                              |                          |     |      |     | •     |
| Input Capacitance                                            | C <sub>ISS</sub>                     |                                                                                              |                          |     | 300  |     | T     |
| Output Capacitance                                           | C <sub>OSS</sub>                     | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,} $ $V_{DS} = 10 \text{ V}$                        |                          |     | 73   |     | pF    |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                                              |                          |     | 44   |     |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  |                                                                                              |                          |     | 3.8  |     | nC    |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   | $V_{GS} = 4.5 \text{ V},$                                                                    | V <sub>DS</sub> = 10 V,  |     | 0.3  |     |       |
| Gate-to-Source Charge                                        | $Q_{GS}$                             | I <sub>D</sub> = 3                                                                           | 5.5 A                    |     | 0.7  |     |       |
| Gate-to-Drain Charge                                         | $Q_GD$                               |                                                                                              |                          |     | 1.1  |     |       |
| Gate Resistance                                              | RG                                   |                                                                                              |                          |     | 2.8  |     | Ω     |
| SWITCHING CHARACTERISTICS (Note 3)                           |                                      |                                                                                              |                          |     | _    |     | -     |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                   |                                                                                              |                          |     | 7.4  |     |       |
| Rise Time                                                    | t <sub>r</sub>                       | $V_{GS} = 4.5 \text{ V}$                                                                     | V <sub>DS</sub> = 10 V,  |     | 11.2 |     | 1     |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  | $V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V},$ $I_{D} = 3.5 \text{ A}, R_{G} = 3.0 \Omega$ |                          |     | 12.8 |     | ns    |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                                              |                          |     | 1.6  |     |       |
| DRAIN-TO-SOURCE CHARACTERISTICS                              | <u> </u>                             |                                                                                              |                          | -   | -    | -   | -     |
| Forward Diode Voltage                                        | $V_{SD}$                             | V <sub>GS</sub> = 0 V                                                                        | T <sub>J</sub> = 25°C    |     | 0.71 |     | 1     |
| -                                                            |                                      | $I_{\rm D} = 0.8  {\rm A}$                                                                   | T <sub>J</sub> = 125°C   |     | 0.57 |     | V     |
| Reverse Recovery Time                                        | t <sub>RR</sub>                      |                                                                                              |                          |     | 9.0  |     |       |
| Charge Time                                                  | T <sub>a</sub>                       | $V_{GS}$ = 0 V, $d_{IS}/d_t$ = 100 A/ $\mu$ s, $I_S$ = 0.8 A                                 |                          |     | 5.0  |     | ns    |
| Discharge Time                                               | T <sub>b</sub>                       |                                                                                              |                          |     | 4.0  |     |       |
| Reverse Recovery Time                                        | Q <sub>RR</sub>                      |                                                                                              |                          |     | 2.5  |     | nC    |

#### **ORDERING INFORMATION**

| Device       | Package             | Shipping <sup>†</sup> |
|--------------|---------------------|-----------------------|
| NTGD3148NT1G | TSOP-6<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

V<sub>DS</sub> ≥ 10 V

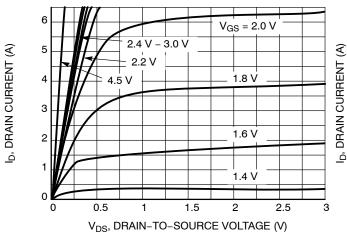
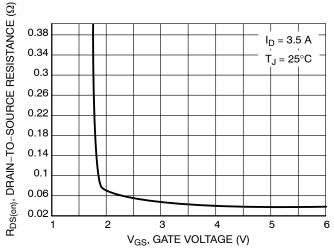




Figure 1. On-Region Characteristics

V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics



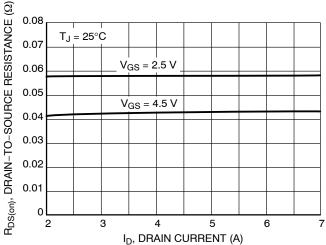
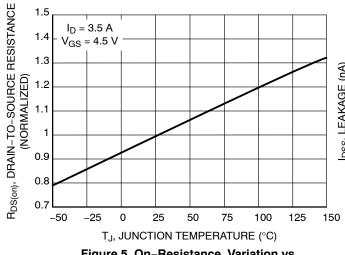




Figure 3. On-Resistance vs. Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage



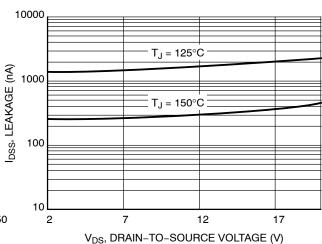



Figure 5. On–Resistance Variation vs. Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

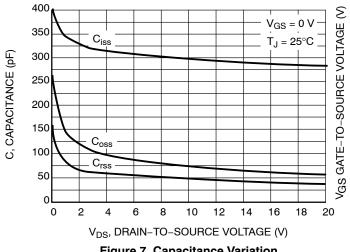



Figure 7. Capacitance Variation

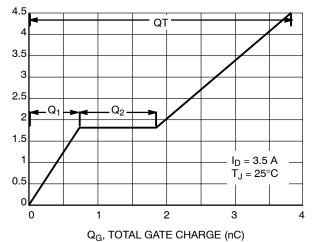



Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

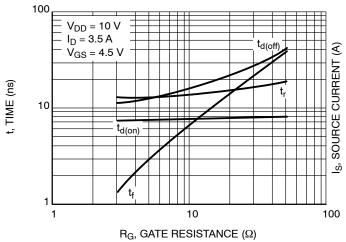



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

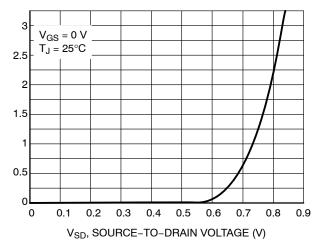



Figure 10. Diode Forward Voltage vs. Current

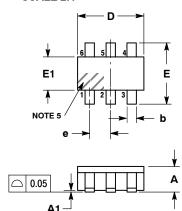


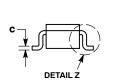
#### TSOP-6 CASE 318G-02 **ISSUE V**

12

C SEATING PLANE

**DATE 12 JUN 2012** 


STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR


3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
  PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

|     | MILLIMETERS |      |      |  |  |
|-----|-------------|------|------|--|--|
| DIM | MIN NOM MAX |      |      |  |  |
| Α   | 0.90        | 1.00 | 1.10 |  |  |
| A1  | 0.01        | 0.06 | 0.10 |  |  |
| b   | 0.25        | 0.38 | 0.50 |  |  |
| С   | 0.10        | 0.18 | 0.26 |  |  |
| D   | 2.90        | 3.00 | 3.10 |  |  |
| E   | 2.50        | 2.75 | 3.00 |  |  |
| E1  | 1.30        | 1.50 | 1.70 |  |  |
| е   | 0.85        | 0.95 | 1.05 |  |  |
| L   | 0.20        | 0.40 | 0.60 |  |  |
| L2  | 0.25 BSC    |      |      |  |  |
| М   | 0°          | 10°  |      |  |  |





**DETAIL Z** 

STYLE 3: PIN 1. ENABLE 2. N/C

5. V in

6. V out

2. DRAIN

3. SOURCE 4. DRAIN

5. DRAIN 6. HIGH VOLTAGE GATE

3. R BOOST 4. Vz

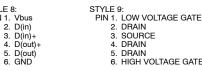
Н

| STYLE 1:         | STYLE  |
|------------------|--------|
| PIN 1. DRAIN     | PIN 1. |
| 2. DRAIN         | 2.     |
| 3. GATE          | 3.     |
| 4. SOURCE        | 4.     |
| 5. DRAIN         | 5.     |
| 6. DRAIN         | 6.     |
| STYLE 7:         | STYLE  |
| PIN 1. COLLECTOR | PIN 1. |
| 2. COLLECTOR     | 2.     |
| 3. BASE          | 3.     |
| 4. N/C           | 4.     |

COLLECTOR

6. EMITTER

2. SOURCE 2


5. SOURCE 1

DRAIN 1

3. GATE 2 4. DRAIN 2

STYLE 13: PIN 1. GATE 1





STYLE 14: STYLE 15:

| ANODE         | PIN 1. ANODE              |
|---------------|---------------------------|
| SOURCE        | <ol><li>SOURCE</li></ol>  |
| GATE          | <ol><li>GATE</li></ol>    |
| CATHODE/DRAIN | <ol><li>DRAIN</li></ol>   |
| CATHODE/DRAIN | 5. N/C                    |
| CATHODE/DRAIN | <ol><li>CATHODE</li></ol> |
|               |                           |

STYLE 4: PIN 1. N/C

STYLE 10:

STYLE 16: PIN 1. ANODE/CATHODE

FMITTER

CATHODE

COLLECTOR

2. BASE

3.

5. ANODE

PIN 1. D(OUT)+

2. GND

5. VBUS 6. D(IN)+

3. D(OUT)-4. D(IN)-

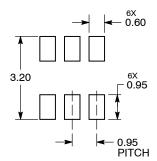
| <ol><li>V in</li></ol>     |  |
|----------------------------|--|
| <ol><li>NOT USED</li></ol> |  |
| <ol><li>GROUND</li></ol>   |  |
| <ol><li>ENABLE</li></ol>   |  |
| 6. LOAD                    |  |
|                            |  |
|                            |  |

STYLE 5:

STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 DRAIN 2 4 SOURCE 2

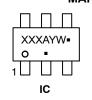
| STYLE 17:                       |
|---------------------------------|
| PIN 1. EMITTER                  |
| 2. BASE                         |
| <ol><li>ANODE/CATHODE</li></ol> |
| 4. ANODE                        |

5. CATHODE


6. COLLECTOR

## **RECOMMENDED SOLDERING FOOTPRINT\***

PIN 1.


3.

5.



**DIMENSIONS: MILLIMETERS** 

#### **GENERIC** MARKING DIAGRAM\*





XXX = Specific Device Code Α

Υ = Year

W = Work Week = Pb-Free Package

XXX = Specific Device Code =Assembly Location M = Date Code

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB14888C | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TSOP-6      |                                                                                                                                                                                   | PAGE 1 OF 1 |

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

**TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative