

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

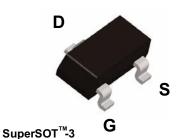
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

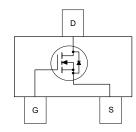
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdicii on or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor reducts for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, and filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended o

February 2009

FDN361BN

30V N-Channel, Logic Level, PowerTrench[®] MOSFET


General Description


These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

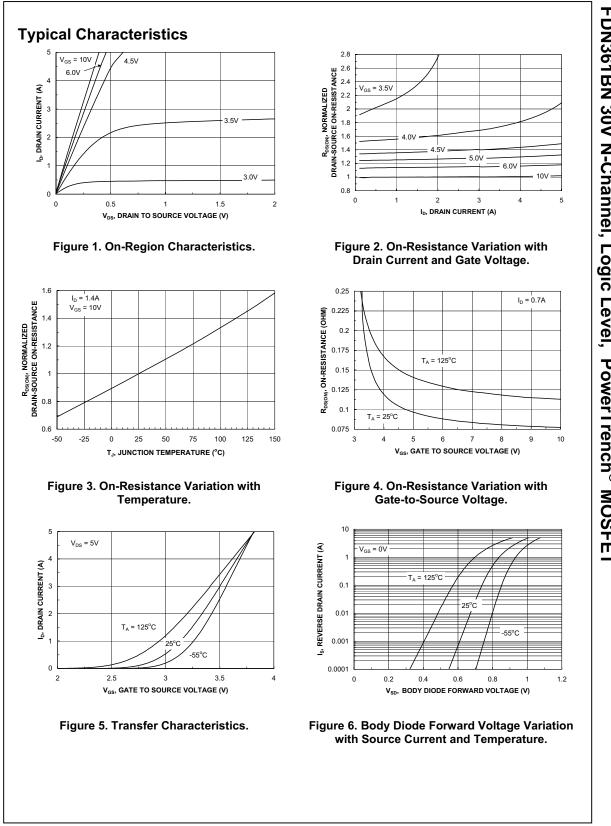
These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

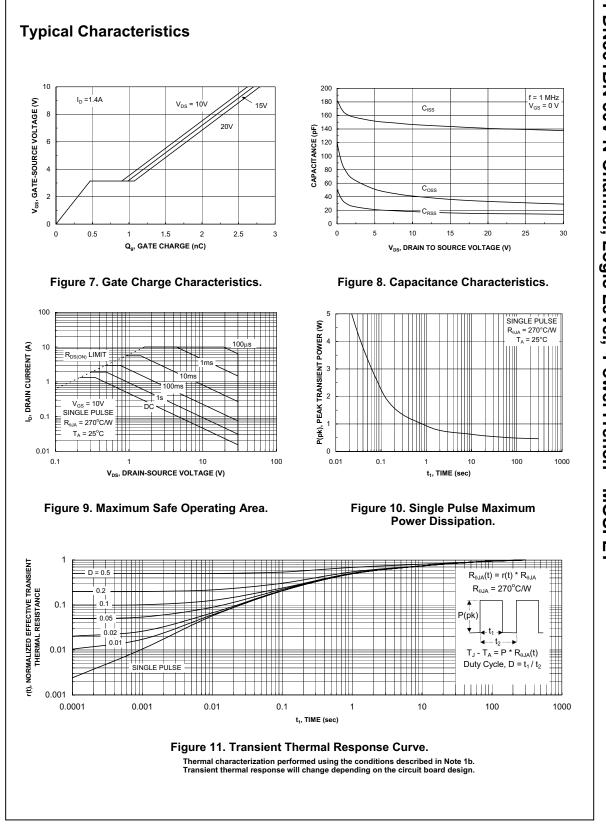
- 1.4 A, 30 V. $R_{DS(ON)}$ = 110 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ = 160 m Ω @ V_{GS} = 4.5 V
- Low gate charge
- Industry standard outline SOT-23 surface mount package using proprietary SuperSOT[™]-3 design for superior thermal and electrical capabilities
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			± 20	V
ID	Drain Curre	nt – Continuous	(Note 1a)	1.4	A
	– Pulsed			10	
PD	Power Dissi	pation for Single Operation	n (Note 1a)	0.5	W
			(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C
Therma R _{0JA}	I Charact Thermal Re	teristics sistance, Junction-to-Amb	ent (Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Re	sistance, Junction-to-Case	75		
Packag	e Marking	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity


Device MarkingDeviceReel SizeTape widthQuantity361BFDN361BN7"8mm3000 units

©2009 Fairchild Semiconductor Corporation FDN361BN Rev A1(W)


tics cource Breakdown Voltage own Voltage Temperature ent ate Voltage Drain Current ody Leakage tics (Note 2) ureshold Voltage rain–Source sistance te Drain Current 1 Transconductance	$\begin{array}{c c} V_{GS} = 0 \ V, & I_D = 250 \ \mu A \\ I_D = 250 \ \mu A, Referenced to 25^{\circ}C \\ \hline V_{DS} = 24 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^{\circ}C \\ \hline V_{GS} = \pm 20 \ V, \ V_{DS} = 0 \ V \\ \hline \end{array}$	30	26 2.1 92	1 10 ±100	V mV/°C μA μA nA
Cource Breakdown Voltage cown Voltage Temperature ent ate Voltage Drain Current ody Leakage tics (Note 2) areshold Voltage rain–Source sistance te Drain Current	$\begin{split} & _{D} = 250 \; \mu \text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ & _{DS} = 24 \; \text{V}, \text{V}_{GS} = 0 \; \text{V} \\ & _{VDS} = 24 \; \text{V}, \; \text{V}_{GS} = 0 \; \text{V}, \; \text{T}_{J} = 55^{\circ}\text{C} \\ & _{VGS} = \pm 20 \; \text{V}, \text{V}_{DS} = 0 \; \text{V} \\ & _{VDS} = \text{V}_{GS}, \text{I}_{D} = 250 \; \mu \text{A} \\ & _{VGS} = 10 \; \text{V}, \text{I}_{D} = 1.4 \; \text{A} \\ & _{VGS} = 4.5 \; \text{V}, \text{I}_{D} = 1.2 \; \text{A} \\ & _{VGS} = 10 \; \text{V}, \; \text{I}_{D} = 1.4 \; \text{A}, \; \text{T}_{J} = 125^{\circ}\text{C} \\ \end{split}$		2.1	10 ±100	mV/°C μA μA nA
ent ate Voltage Drain Current ody Leakage tics (Note 2) irreshold Voltage rain–Source sistance te Drain Current	$\begin{split} & _{D} = 250 \; \mu \text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ & _{DS} = 24 \; \text{V}, \text{V}_{GS} = 0 \; \text{V} \\ & _{VDS} = 24 \; \text{V}, \; \text{V}_{GS} = 0 \; \text{V}, \; \text{T}_{J} = 55^{\circ}\text{C} \\ & _{VGS} = \pm 20 \; \text{V}, \text{V}_{DS} = 0 \; \text{V} \\ & _{VDS} = \text{V}_{GS}, \text{I}_{D} = 250 \; \mu \text{A} \\ & _{VGS} = 10 \; \text{V}, \text{I}_{D} = 1.4 \; \text{A} \\ & _{VGS} = 4.5 \; \text{V}, \text{I}_{D} = 1.2 \; \text{A} \\ & _{VGS} = 10 \; \text{V}, \; \text{I}_{D} = 1.4 \; \text{A}, \; \text{T}_{J} = 125^{\circ}\text{C} \\ \end{split}$	1	2.1	10 ±100	μA μA nA
ody Leakage tics (Note 2) ireshold Voltage rain–Source sistance te Drain Current	$\label{eq:VDS} \begin{array}{ c c c c c }\hline V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^\circ C \\ \hline V_{GS} = \pm 20 \ V, V_{DS} = 0 \ V \\ \hline \hline V_{DS} = V_{GS}, I_D = 250 \ \mu A \\ \hline V_{GS} = 10 \ V, I_D = 1.4 \ A \\ \hline V_{GS} = 4.5 \ V, I_D = 1.2 \ A \\ \hline V_{GS} = 10 \ V, I_D = 1.4 \ A, \ T_J = 125^\circ C \\ \hline \end{array}$	1		10 ±100	μA nA
tics (Note 2) meshold Voltage rain–Source sistance te Drain Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 V, I_D = 1.4 A$ $V_{GS} = 4.5 V, I_D = 1.2 A$ $V_{GS} = 10 V, I_D = 1.4 A, T_J = 125^{\circ}\text{C}$	1		±100 3	nA
tics (Note 2) meshold Voltage rain–Source sistance te Drain Current	$\label{eq:V_DS} \begin{array}{ c c c c c } V_{DS} = V_{GS}, & I_D = 250 \ \mu A \\ \hline V_{GS} = 10 \ V, & I_D = 1.4 \ A \\ \hline V_{GS} = 4.5 \ V, & I_D = 1.2 \ A \\ \hline V_{GS} = 10 \ V, \ I_D = 1.4 \ A, \ T_J = 125^\circ C \end{array}$	1		3	I
reshold Voltage rain–Source sistance te Drain Current	$V_{GS} = 4.5 \text{ V}, \qquad I_D = 1.2 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 1.4 \text{ A}, T_J = 125^{\circ}\text{C}$	1		-	V
rain–Source iistance te Drain Current	$V_{GS} = 4.5 \text{ V}, \qquad I_D = 1.2 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 1.4 \text{ A}, T_J = 125^{\circ}\text{C}$	1		-	V
te Drain Current	$V_{GS} = 4.5 \text{ V}, \qquad I_D = 1.2 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 1.4 \text{ A}, T_J = 125^{\circ}\text{C}$		92		
te Drain Current	V_{GS} = 10 V, I_D = 1.4 A, T_J = 125°C			110	mΩ
			120	160	
			114	150	
l Transconductance	$V_{GS} = 4.5 V$, $V_{DS} = 5 V$	3.5			A
	$V_{DS} = 5 V$, $I_{D} = 1.4 A$		4		S
cteristics					
apacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		145	193	pF
Capacitance	f = 1.0 MHz		35	47	pF
e Transfer Capacitance			15	23	pF
esistance	V_{GS} = 15 mV, f = 1.0 MHz		1.6		Ω
			3	6	ns
n Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		8	16	ns
ff Delay Time			16	29	ns
			2	4	ns
ate Charge	$V_{DS} = 15 V$. $I_D = 1.4 A$.		1.3	1.8	nC
5	$V_{GS} = 4.5 V$		0.5		nC
<u> </u>			0.5		nC
)iodo Charactoristics					
	$V_{GS} = 0 V$, $I_S = 0.42 A$ (Note 2)		0.8	1.2	V
everse Recovery Time	$I_F = 1.4 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$		11	22	nS
			4		nC
	n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge rain Charge Diode Characteristics	Capacitance $f = 1.0 \text{ MHz}$ a Transfer Capacitance $V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$ esistance $V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$ racteristics (Note 2) $I_D = 15 \text{ V}, I_D = 1 \text{ A}, V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ ff Delay Time $V_{DS} = 15 \text{ V}, R_{GEN} = 6 \Omega$ ff Fall Time $V_{DS} = 15 \text{ V}, I_D = 1.4 \text{ A}, V_{GS} = 4.5 \text{ V}$ ate Charge $V_{DS} = 15 \text{ V}, I_D = 1.4 \text{ A}, V_{GS} = 4.5 \text{ V}$ ource Charge $V_{GS} = 0 \text{ V}, I_S = 0.42 \text{ A} (Note 2)$ Beverse Recovery Time $I_F = 1.4 \text{ A}, d_{IF}/d_t = 100 \text{ A/}\mu\text{s}$	Capacitancef = 1.0 MHza Transfer CapacitanceV_{GS} = 15 mV, f = 1.0 MHzesistanceV_{GS} = 15 mV, f = 1.0 MHzeacteristics (Note 2)Nn Delay TimeV_{DD} = 15 V, I_D = 1 A, V_{GS} = 10 V, R_{GEN} = 6 \Omegaff Delay TimeV_{DS} = 15 V, I_D = 1.4 A, V_{OS} = 4.5 Vff Fall TimeV_{DS} = 4.5 Vate ChargeV_{GS} = 0 V, I_S = 0.42 A (Note 2)cource Diode ForwardV_{GS} = 0 V, I_S = 0.42 A (Note 2)Reverse Recovery TimeI_F = 1.4 A, d_{IF}/d_t = 100 A/µs	Capacitancef = 1.0 MHz35a Transfer Capacitance15esistance $V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$ 1.6cacteristics (Note 2)nn Delay Time $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A}, V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 8ff Delay TimeV_{DS} = 15 V, I_D = 1.4 \text{ A}, V_{GS} = 4.5 \text{ V}16ff Fall Time20.5rain Charge $V_{GS} = 0 \text{ V}, I_S = 0.42 \text{ A} (Note 2)$ 0.8Reverse Recovery TimeI_F = 1.4 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mus11	$\begin{array}{c cccc} Capacitance & f = 1.0 \text{ MHz} & 35 & 47 \\ \hline a \text{ Transfer Capacitance} & V_{GS} = 15 \text{ mV}, & f = 1.0 \text{ MHz} & 1.5 & 23 \\ \hline asistance & V_{GS} = 15 \text{ mV}, & f = 1.0 \text{ MHz} & 1.6 \\ \hline acteristics & (Note 2) & \\ n \text{ Delay Time} & V_{DD} = 15 \text{ V}, & I_D = 1 \text{ A}, & 3 & 6 \\ \hline n \text{ Rise Time} & V_{GS} = 10 \text{ V}, & R_{GEN} = 6 \Omega & 8 & 16 \\ \hline ff \text{ Delay Time} & 16 & 29 \\ \hline ff \text{ Fall Time} & 2 & 4 \\ ate \text{ Charge} & V_{DS} = 15 \text{ V}, & I_D = 1.4 \text{ A}, & 1.3 & 1.8 \\ \hline ource \text{ Charge} & V_{GS} = 4.5 \text{ V} & 0.5 \\ \hline n \text{ Outce Diode Characteristics} & \\ \hline ource Diode Forward & V_{GS} = 0 \text{ V}, & I_S = 0.42 \text{ A} & (Note 2) & 0.8 & 1.2 \\ \hline eeverse \text{ Recovery Time} & I_F = 1.4 \text{ A}, & d_{IF}/d_t = 100 \text{ A}/\mus & 11 & 22 \\ \hline \end{array}$

FDN361BN 30V N-Channel, Logic Level, PowerTrench[®] MOSFET

FDN361BN Rev A1(W)

FDN361BN Rev A1(W)

FDN361BN Rev A1(W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FRFET [®]	Programmable Active Droop™	the
CorePLUS™	Global Power Resource SM	QFĔT®	puwer
CorePOWER™	Green FPS™	QS™	franchise
CROSSVOLT™	Green FPS™ e-Series™	Quiet Series™	TinyBoost™
CTL™	GTO™	RapidConfigure™	TinyBuck™
Current Transfer Logic™	IntelliMAX™		TinyLogic®
EcoSPARK [®]	ISOPLANAR™	т	TINYOPTO™
EfficentMax™	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPower™
ZSWITCH™ *	MICROCOUPLER™	SmartMax™	TinyPWM™
	MicroFET™	SMART START™	TinyWire™
⇒ ∕	MicroPak™	SPM®	TriFault Detect™
	MillerDrive™	STEALTH™	µSerDes™
F	MotionMax™	SuperFET™	\mathcal{U}
airchild®	Motion-SPM™	SuperSOT™-3	SerDes
airchild Semiconductor®	OPTOLOGIC®	SuperSOT™-6	UHC®
FACT Quiet Series™	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
FACT®	®	SupreMOS™	UniFET™
FAST®		SyncFET™	VCX [™]
FastvCore™	Ú.		VisualMax™
FlashWriter [®] *	PDP SPM™	SYSTEM ®	XS™
PS™	Power-SPM™		
F-PFS™	PowerTrench [®]	The Power Franchise [®]	
	PowerXS™		

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's dull nage of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized distributors.

PRODUCT STATUS DEFINITIONS

Product Status	Definition		
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
	First Production		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com