**ON Semiconductor** 

Is Now

# Onsemi

To learn more about onsemi<sup>™</sup>, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

# MOSFET – Power, Single, N-Channel, SO-8 FL 30 V, 58.5 A

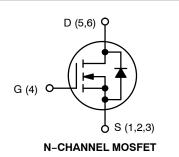
## Features

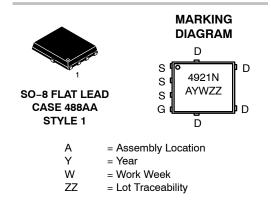
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Thermally Enhanced SO-8 Package
- These are Pb–Free Device

#### Applications

- CPU Power Delivery
- DC-DC Converters
- High Side Switching

#### **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}C$ unless otherwise stated)


| Para                                                                                       | ameter                                        |                       | Symbol                               | Value          | Unit |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|--------------------------------------|----------------|------|
| Drain-to-Source Vo                                                                         |                                               |                       | V <sub>DSS</sub>                     | 30             | V    |
| Gate-to-Source Vol                                                                         | 0                                             |                       | V <sub>GS</sub>                      | ±20            | V    |
| Continuous Drain<br>Current R <sub>0JA</sub>                                               | lugo                                          | T <sub>A</sub> = 25°C | I <sub>D</sub>                       | 13.8           | A    |
| (Note 1)                                                                                   |                                               | T <sub>A</sub> = 85°C |                                      | 10             |      |
| Power Dissipation $R_{\theta JA}$ (Note 1)                                                 |                                               | T <sub>A</sub> = 25°C | PD                                   | 2.14           | W    |
| Continuous Drain                                                                           |                                               | T <sub>A</sub> = 25°C | ۱ <sub>D</sub>                       | 22.4           | А    |
| Current R <sub>θJA</sub> ≤<br>10 sec                                                       |                                               | T <sub>A</sub> = 85°C |                                      | 16.1           |      |
| $\begin{array}{l} \text{Power Dissipation} \\ R_{\theta JA,}t\leq10\text{sec} \end{array}$ | Steady                                        | T <sub>A</sub> = 25°C | PD                                   | 5.61           | W    |
| Continuous Drain<br>Current R <sub>θ.IA</sub>                                              | State                                         | $T_A = 25^{\circ}C$   | ۱ <sub>D</sub>                       | 8.8            | A    |
| (Note 2)                                                                                   |                                               | $T_A = 85^{\circ}C$   |                                      | 6.4            |      |
| Power Dissipation $R_{\theta JA}$ (Note 2)                                                 |                                               | T <sub>A</sub> = 25°C | PD                                   | 0.87           | W    |
| Continuous Drain                                                                           |                                               | $T_{C} = 25^{\circ}C$ | Ι <sub>D</sub>                       | 58.5           | A    |
| Current R <sub>θJC</sub><br>(Note 1)                                                       |                                               | T <sub>C</sub> = 85°C |                                      | 42.3           |      |
| Power Dissipation $R_{\theta JC}$ (Note 1)                                                 |                                               | T <sub>C</sub> = 25°C | PD                                   | 38.5           | W    |
| Pulsed Drain<br>Current                                                                    | t <sub>p</sub> =10μs                          | T <sub>A</sub> = 25°C | I <sub>DM</sub>                      | 117            | A    |
| Current limited by pa                                                                      | ackage                                        | T <sub>A</sub> = 25°C | I <sub>Dmaxpkg</sub>                 | 100            | Α    |
| Operating Junction a<br>Temperature                                                        | Operating Junction and Storage<br>Temperature |                       | T <sub>J</sub> ,<br>T <sub>STG</sub> | –55 to<br>+150 | °C   |
| Source Current (Boo                                                                        | ly Diode)                                     |                       | ۱ <sub>S</sub>                       | 38.5           | Α    |
| Drain to Source dV/d                                                                       | dt                                            |                       | dV/dt                                | 6              | V/ns |




# **ON Semiconductor®**

#### http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX        | I <sub>D</sub> MAX |
|----------------------|--------------------------------|--------------------|
| 30 V                 | $6.95~\mathrm{m}\Omega$ @ 10 V |                    |
| 30 V                 | 10.8 mΩ @ 4.5 V                | 58.5 A             |





#### **ORDERING INFORMATION**

| Device        | Package             | Shipping <sup>†</sup> |
|---------------|---------------------|-----------------------|
| NTMFS4921NT1G | SO-8FL<br>(Pb-Free) | 1500 /<br>Tape & Reel |
| NTMFS4921NT3G | SO–8FL<br>(Pb–Free) | 5000 /<br>Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **MAXIMUM RATINGS** ( $T_J = 25^{\circ}C$ unless otherwise stated)

| Parameter                                                                                                                                                                                                                                   | Symbol | Value | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|
| $ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy (V}_{DD} = 50 \mbox{ V, } V_{GS} = 10 \mbox{ V,} \\ \mbox{I}_L = \ 24 \mbox{ A}_{pk}, \mbox{ L} = 0.3 \mbox{ mH}, \mbox{ R}_G = 25  \Omega ) \end{array} $ | EAS    | 86    | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                                                                                                                                                           | ΤL     | 260   | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### THERMAL RESISTANCE MAXIMUM RATINGS

| Parameter                                   | Symbol                | Value | Unit |
|---------------------------------------------|-----------------------|-------|------|
| Junction-to-Case (Drain)                    | $R_{\theta JC}$       | 3.25  |      |
| Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$       | 58.3  | °C/W |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$       | 144.1 | °C/W |
| Junction-to-Ambient – t $\leq$ 10 sec       | $R_{	extsf{	heta}JA}$ | 22.3  |      |

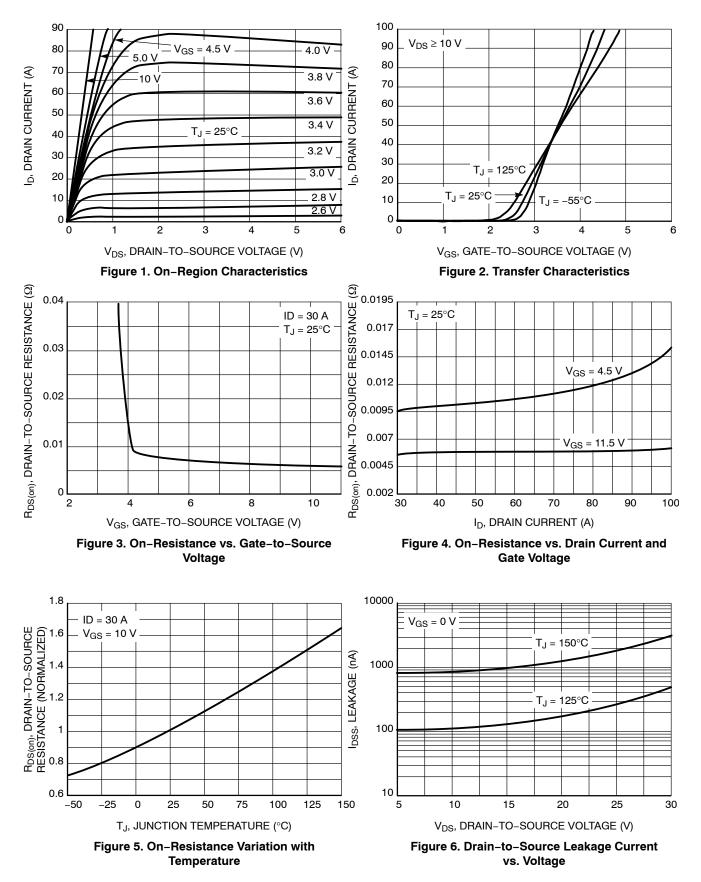
Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

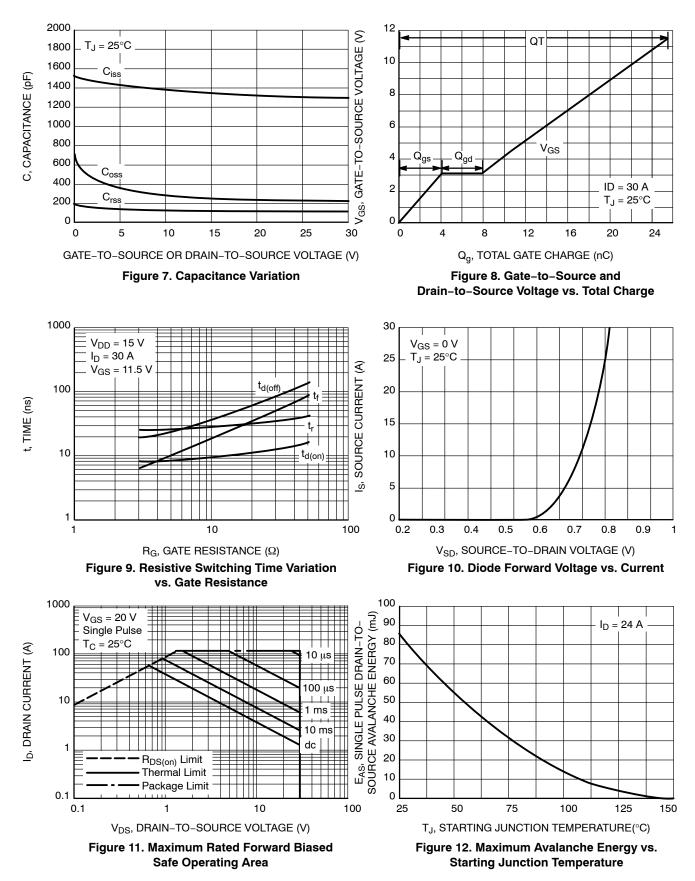
#### ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise specified)

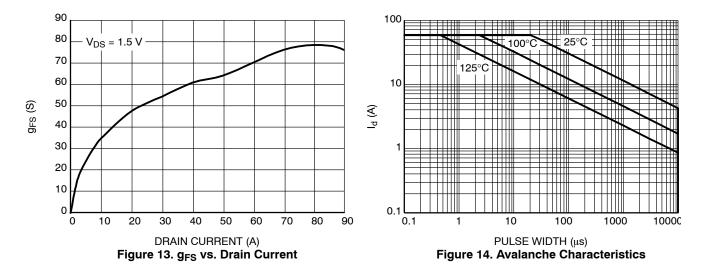
| Parameter                                                    | Symbol                                   | Test Condition                                                                                                                               |                        | Min  | Тур | Max  | Unit  |
|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|-----|------|-------|
| OFF CHARACTERISTICS                                          |                                          |                                                                                                                                              |                        |      |     |      |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                     | $V_{GS}$ = 0 V, $I_D$ = 250 $\mu$ A                                                                                                          |                        | 30   |     |      | V     |
| Drain-to-Source Breakdown Voltage<br>(transient)             | V <sub>(BR)DSSt</sub>                    | $\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ I_{D(aval)} = 13 \ A, \\ T_{case} = 25^{\circ} C, \ t_{transient} = 100 \ ns \end{array}$ |                        | 34   |     |      | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /<br>T <sub>J</sub> |                                                                                                                                              |                        |      | 25  |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                         | $V_{GS} = 0 V,$                                                                                                                              | $T_J = 25^{\circ}C$    |      |     | 1    |       |
|                                                              |                                          | $V_{DS} = 24 V$                                                                                                                              | T <sub>J</sub> = 125°C |      |     | 10   | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                         | $V_{DS}$ = 0 V, $V_{GS}$                                                                                                                     | = ±20 V                |      |     | ±100 | nA    |
| ON CHARACTERISTICS (Note 3)                                  |                                          |                                                                                                                                              |                        |      |     |      |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                      | $V_{GS} = V_{DS}, I_D =$                                                                                                                     | = 250 μA               | 1.45 | 1.8 | 2.5  | V     |
| Negative Threshold Temperature Coefficient                   | V <sub>GS(TH)</sub> /T <sub>J</sub>      |                                                                                                                                              |                        |      |     |      | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                      | V <sub>GS</sub> = 10 V to                                                                                                                    | I <sub>D</sub> = 30 A  |      | 5.3 | 6.95 |       |

|                          |     | 11.5 V                                  | l <sub>D</sub> = 15 A | 5.2 |      |    |
|--------------------------|-----|-----------------------------------------|-----------------------|-----|------|----|
|                          |     | V <sub>GS</sub> = 4.5 V                 | I <sub>D</sub> = 30 A | 8.6 | 10.8 | mΩ |
|                          |     |                                         | I <sub>D</sub> = 15 A | 8.4 |      |    |
| Forward Transconductance | 9fs | V <sub>DS</sub> = 1.5 V, I <sub>D</sub> | = 30 A                | 54  |      | S  |

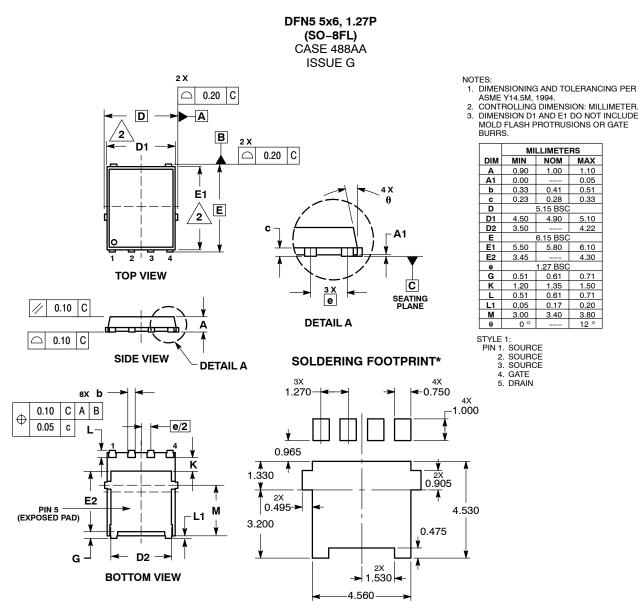
#### **CHARGES AND CAPACITANCES**


| Input Capacitance            | C <sub>ISS</sub>    |                                                                        | 1400 |    |    |
|------------------------------|---------------------|------------------------------------------------------------------------|------|----|----|
| Output Capacitance           | C <sub>OSS</sub>    | $V_{GS}$ = 0 V, f = 1 MHz, $V_{DS}$ = 12 V                             | 282  |    | pF |
| Reverse Transfer Capacitance | C <sub>RSS</sub>    |                                                                        | 136  |    |    |
| Total Gate Charge            | Q <sub>G(TOT)</sub> |                                                                        | 10.7 | 16 |    |
| Threshold Gate Charge        | Q <sub>G(TH)</sub>  |                                                                        | 1.4  |    | -0 |
| Gate-to-Source Charge        | Q <sub>GS</sub>     | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 15 V; I <sub>D</sub> = 30 A | 4.1  |    | nC |
| Gate-to-Drain Charge         | Q <sub>GD</sub>     |                                                                        | 3.8  |    |    |
| Total Gate Charge            | Q <sub>G(TOT)</sub> | $V_{GS}$ = 11.5 V, $V_{DS}$ = 15 V,<br>I <sub>D</sub> = 30 A           | 25   |    | nC |


#### SWITCHING CHARACTERISTICS (Note 4)


| Turn-On Delay Time  | t <sub>d(ON)</sub>  |                                                                         | 13.3 |    |
|---------------------|---------------------|-------------------------------------------------------------------------|------|----|
| Rise Time           | t <sub>r</sub>      | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 15 V, I <sub>D</sub> = 15 A, | 38   |    |
| Turn-Off Delay Time | t <sub>d(OFF)</sub> | R <sub>G</sub> = 3.0 Ω                                                  | 16.6 | ns |
| Fall Time           | t <sub>f</sub>      |                                                                         | 3.8  |    |

# **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise specified)


| Parameter                    | Symbol              | Test Cond                                                                            | Min         | Тур  | Max   | Unit |    |
|------------------------------|---------------------|--------------------------------------------------------------------------------------|-------------|------|-------|------|----|
| SWITCHING CHARACTERISTICS (N | ote 4)              |                                                                                      |             |      |       |      |    |
| Turn-On Delay Time           | t <sub>d(ON)</sub>  |                                                                                      |             |      | 8.2   |      |    |
| Rise Time                    | t <sub>r</sub>      | $V_{GS}$ = 11.5 V, $V_{DS}$ = 15 V,<br>I <sub>D</sub> = 15 A, R <sub>G</sub> = 3.0 Ω |             |      | 20    |      | 1  |
| Turn-Off Delay Time          | t <sub>d(OFF)</sub> |                                                                                      |             |      | 23    |      | ns |
| Fall Time                    | t <sub>f</sub>      |                                                                                      |             |      | 3.1   |      |    |
| DRAIN-SOURCE DIODE CHARACTI  | ERISTICS            |                                                                                      |             |      |       |      |    |
| Forward Diode Voltage        | V <sub>SD</sub>     | $V_{GS} = 0 V$ , $T_J = 25^{\circ}C$                                                 |             |      | 0.85  | 1.0  |    |
|                              |                     | $I_{\rm S} = 30  {\rm A}$ $T_{\rm J} = 125^{\circ} {\rm C}$                          |             | 0.74 |       | V    |    |
| Reverse Recovery Time        | t <sub>RR</sub>     | •                                                                                    |             |      | 11    |      |    |
| Charge Time                  | t <sub>a</sub>      | V <sub>GS</sub> = 0 V, dI <sub>S</sub> /dt                                           | = 100 A/μs, |      | 7.5   |      | ns |
| Discharge Time               | t <sub>b</sub>      | $I_{\rm S} = 30 \rm{A}$                                                              |             |      | 3.5   |      |    |
| Reverse Recovery Charge      | Q <sub>RR</sub>     |                                                                                      |             |      | 2.0   |      | nC |
| PACKAGE PARASITIC VALUES     |                     |                                                                                      |             |      |       |      |    |
| Source Inductance            | L <sub>S</sub>      |                                                                                      |             |      | 1.3   |      | nH |
| Drain Inductance             | L <sub>D</sub>      | T <sub>A</sub> = 25°C                                                                |             |      | 0.005 |      |    |
| Gate Inductance              | L <sub>G</sub>      |                                                                                      |             |      | 1.84  |      |    |
| Gate Resistance              | R <sub>G</sub>      |                                                                                      |             | 0.5  | 1.1   | 2.0  | Ω  |







#### PACKAGE DIMENSIONS



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative