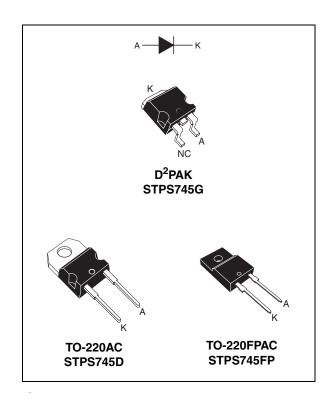


Power Schottky rectifier

Main product characteristics

I _{F(AV)}	7.5 A
V_{RRM}	45 V
T _j (max)	150° C
V _F (max)	0.57 V


Features and Benefits

- Very small conduction losses
- Negligible switching losses
- Extremely fast switching
- Insulated package: TO-220FPAC Insulating voltage = 2000 V DC Capacitance = 12 pF
- Avalanche capability specified

Description

Single Schottky rectifier suited for Switch Mode Power Supply and high frequency DC to DC converters.

Packaged either in TO-220AC, TO-220FPAC or D²PAK, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications.

Characteristics STPS745

Characteristics 1

Table 1. **Absolute Ratings (limiting values)**

Symbo	o Parameter				Unit
V _{RRM}	Repetitive peak reverse voltage			45	V
I _{F(RMS)}	RMS forward voltage			20	Α
I _{F(AV)}	Average forward current $\delta = 0.5$	TO-220AC / D ² PAK	T _c = 160° C	7.5	А
. (, ., ,	0 = 0.5	TO-220FPAC	T _c = 145° C		
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms Sinus	150	Α	
I _{RRM}	Repetitive peak reverse current	t _p = 2 μs square	1	Α	
I _{RSM}	Non repetitive peak reverse current $t_p = 100 \mu s$ square			2	Α
P _{ARM}	Repetitive peak avalanche power $t_p = 1 \mu s T_j = 25^{\circ} C$			2700	W
T _{stg}	Storage temperature range			-65 to + 175	°C
Tj	Maximum operating junction temperature (1)			175	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/µs

^{1.} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

Table 2. Thermal resistances

Symbol	Parameter Value			Unit
R _{th (j-c)} Junction to case		TO-220AC / D ² PAK	3.0	°C/W
	Juniciion to case	TO-220FPAC	5.5	C/VV

Table 3. Static electrical characteristics (per diode)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Payaraa laakaga aurrant	T _j = 25° C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			100	μΑ
'R`	Reverse leakage current	T _j = 125° C	$V_R = V_{RRM}$		5	15	mA
		T _j = 125° C	I _F = 7.5 A		0.5	0.57	
V _F ⁽¹⁾	V _F ⁽¹⁾ Forward voltage drop	T _j = 25° C	I _F = 15 A			0.84	٧
		T _j = 125° C	I _F = 15 A		0.65	0.72	

^{1.} Pulse test: $tp = 380 \mu s$, $\delta < 2\%$

To evaluate the conduction losses use the following equation: P = 0.42 x $I_{F(AV)}$ + 0.020 $I_{F}^{2}_{(RMS)}$

$$P = 0.42 \times I_{F(AV)} + 0.020 I_{F^2(RMS)}$$

STPS745 Characteristics

Figure 1. Average forward power dissipation Figure 2. Average forward current versus versus average forward current ambient temperature (δ = 0.5)

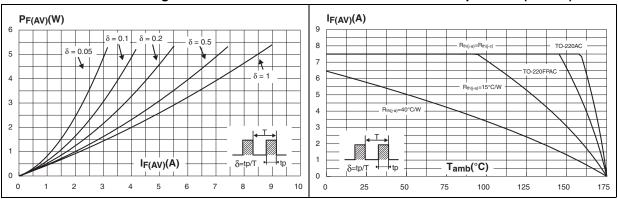


Figure 3. Normalized avalanche power derating versus pulse duration

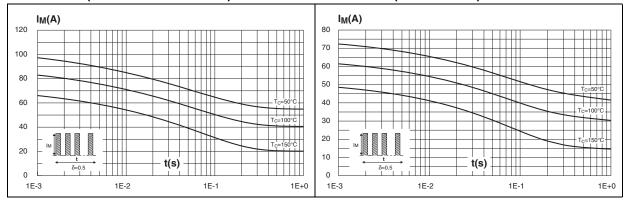
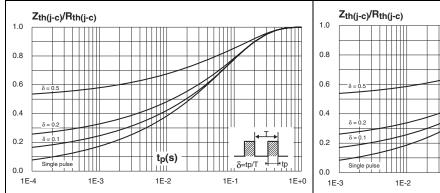

Figure 4. Normalized avalanche power derating versus junction temperature

Figure 6.

Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values)
(TO-220AC and D²PAK)


Non repetitive surge peak forwardcurrent versus overload duration (maximum values) (TO-220FPAC)

Characteristics STPS745

Figure 7. Relative variation of thermal transient impedance junction to case versus pulse duration (TO-220AC and D²PAK)

Figure 8. Relative variation of thermal transient impedance junction to case versus pulse duration (TO-220FPAC)

Zth(j-c)/Rth(j-c)

1.0

0.8

0.6

δ=0.5

0.4

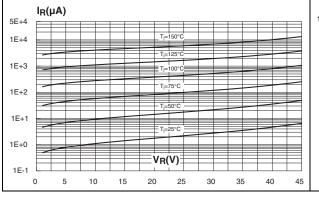
0.2

δ=0.1

0.0

1E-3

1E-2


1E-1

1E+0

1E+1

Figure 9. Reverse leakage current versus reverse voltage applied (typical values)

Figure 10. Junction capacitance versus reverse voltage applied (typical values)

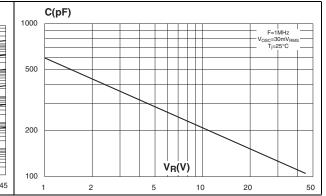
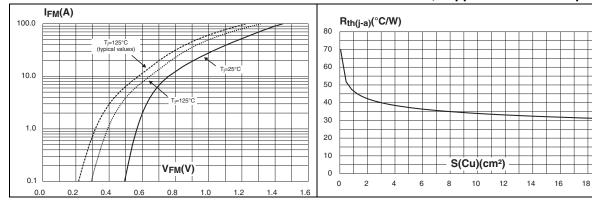



Figure 11. Forward voltage drop versus forward current (maximum values)

Figure 12. Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board, copper thickness: 35 µm)

20

4/9

STPS745 Package information

Package information 2

Epoxy meets UL94, V0

Cooling method: by conduction (C) Recommended torque value: 0.55 Nm Maximum torque value: 0.70 Nm

D²PAK dimensions Table 4.

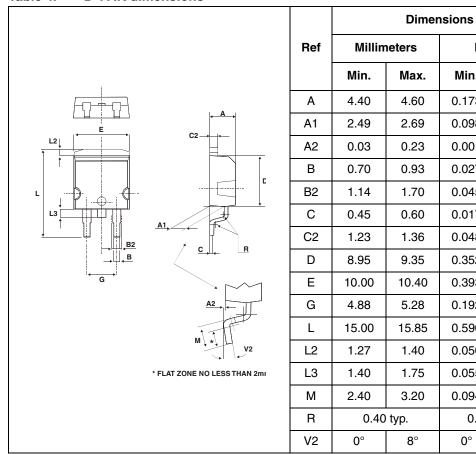
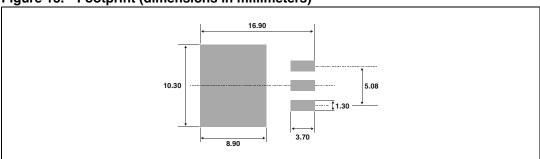



Figure 13. Footprint (dimensions in millimeters)

Inches

Max.

0.181

0.106

0.009

0.037

0.067

0.024

0.054

0.368

0.409

0.208

0.624

0.055

0.069

0.126

0.016 typ.

Min.

0.173

0.098

0.001

0.027

0.045

0.017

0.048

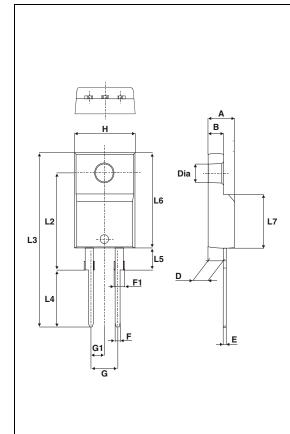
0.352

0.393

0.192

0.590

0.050

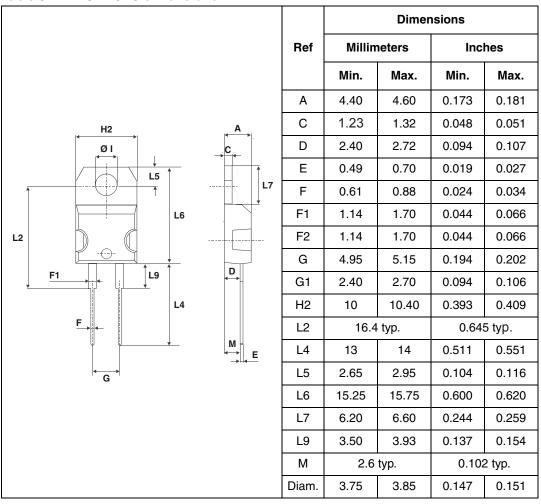

0.055

0.094

0°

Package information STPS745

Table 5. TO-220FPAC dimensions



	Dimensions			
Ref	Millimeters		Inches	
	Min.	Max.	Min.	Max.
Α	4.4	4.6	0.173	0.181
В	2.5	2.7	0.098	0.106
D	2.5	2.75	0.098	0.108
E	0.45	0.70	0.018	0.027
F	0.75	1	0.030	0.039
F1	1.15	1.70	0.045	0.067
G	4.95	5.20	0.195	0.205
G1	2.4	2.7	0.094	0.106
Н	10	10.4	0.393	0.409
L2	16	Тур.	0.63 Typ.	
L3	28.6	30.6	0.126	1.205
L4	9.8	10.6	0.386	0.417
L5	2.9	3.6	0.114	0.142
L6	15.9	16.4	0.626	0.646
L7	9.00	9.30	0.354	0.366
Dia.	3.00	3.20	0.118	0.126

6/9

STPS745 Package information

Table 6. TO-220AC dimensions

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

577

Ordering information STPS745

3 Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS745D	STPS745D	TO-220AC	1.86 g	50	Tube
STPS745G	STPS745G	D ₂ PAK	1.48 g	50	Tube
STPS745G-TR	STPS745G	D ₂ PAK	1.48 g	1000	Tape & reel
STPS745FP	STPS745FP	TO-220FPAC	1.9 g	50	Tube

4 Revision history

Date	Revision	Description of Changes
Jul-2003	6G	Last release.
22-Mar-2007	7	Removed ISOWATT package.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

9/9