MOSFET – Dual, P-Channel, POWERTRENCH

30 V

FDS4935A

General Description

This P-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced POWERTRENCH[®] process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5 V - 20 V).

Features

- -7 A, -30 V. $R_{DS(ON)} = 23 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 35 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Low Gate Charge (15 nC Typical)
- Fast Switching Speed
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- High Power and Current Handling Capability
- This is a Pb–Free Device

Features

- Power Management
- Load Switch
- Battery Protection

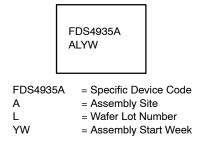
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain-Source Voltage	-30	V
V _{GSS}	Gate-Source Voltage	±20	V
۱ _D	Drain Current – Continuous (Note 1a) – Pulsed	-7 -30	A
PD	Power Dissipation for Dual Operation	2	W
P _D	Power Dissipation (Note 1a) for Single Operation (Note 1b) (Note 1c)	1.6 1 0.9	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

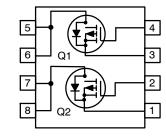
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 1)	40	°C/W



ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

ELECTRICAL CONNECTION

ORDERING INFORMATION

See detailed ordering and shipping information on page $\,5$ of this data sheet.

FDS4935A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter Test Condition		Min	Тур	Max	Unit		
OFF CHARA	DFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = –250 μA	-30	-	-	V		
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C	-	-24	-	mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -24 V, V_{GS} = 0 V	-	-	-10	μΑ		
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = -20$ V, $V_{DS} = 0$ V	-	-	-100	nA		
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = 20 V, V_{DS} = 0 V	-	-	100	nA		

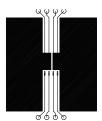
ON CHARACTERISTICS (Note 2)

		14 14 1 0 70 1			_	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.6	-3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C	-	4.4	-	mV/°C
ΔT_{J}						
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = –10 V, I _D = –7 A V _{GS} = –4.5 V, I _D = –5.5 A	-	19	23	mΩ
()		$V_{GS} = -4.5 \text{ V}, I_D = -5.5 \text{ A}$	-	28	35	
		$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -7 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$	-	26	34	
I _{D(on)}	On-State drain Current	V_{GS} = -10 V, V_{DS} = -5 V	-30	-	-	А
9 FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -7 \text{ A}$	-	19	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V _{DS} = –15 V, V _{GS} = 0 V f = 1.0 MHz	-	1233	_	pF
C _{oss}	Output Capacitance	t = 1.0 MHz	-	311	-	pF
C _{rss}	Reverse Transfer Capacitance		-	152	_	pF

SWITCHING CHARACTERISTICS (Note 2)


t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A}$	-	13	23	ns
t _r	Turn-On Rise Time	V _{GS} = –10 V, R _{GEN} = 6 Ω	-	10	20	ns
t _{d(off)}	Turn-Off Delay Time]	-	48	77	ns
t _f	Turn-Off Fall Time]	-	25	40	ns
Qg	Total Gate Charge	V _{DS} = -15 V, I _D = -7 A V _{GS} = -5 V	-	15	21	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -5 V		4.4	-	nC
Q _{gd}	Gate-Drain Charge		-	4.5	-	nC

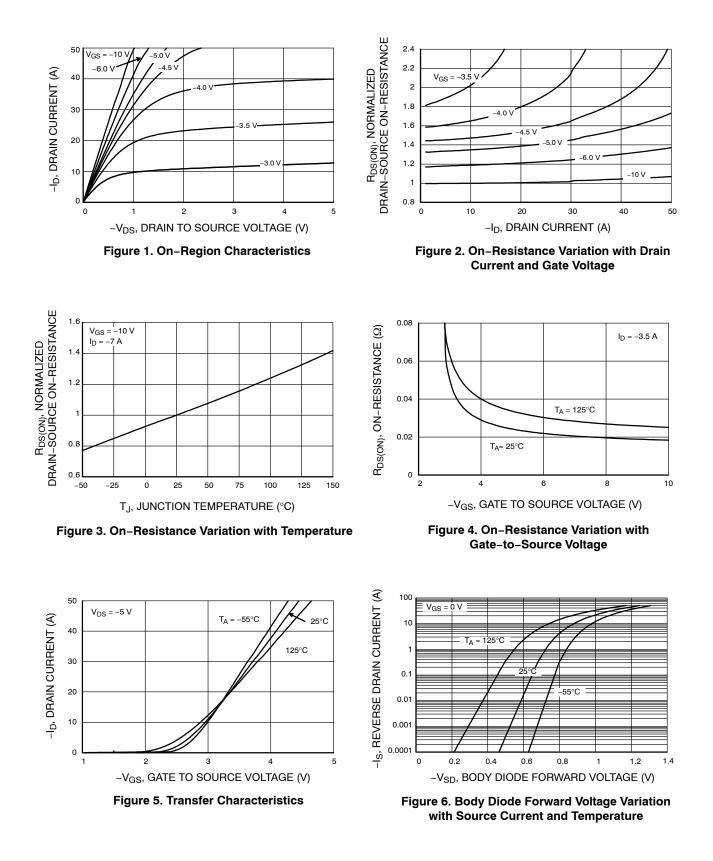
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	-2.1	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -2.1 \text{ A} \text{ (Note 2)}$	-	-0.75	-1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

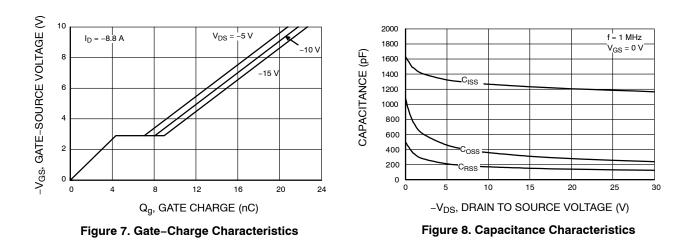
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

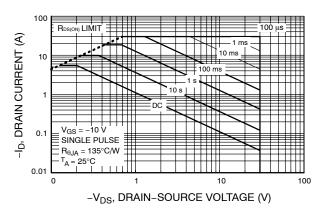
a) 78°C/W when mounted on a 0.5 in² pad of 2 oz. Copper.


b) 125°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

c) 135°C/W when mounted on a minimum pad.

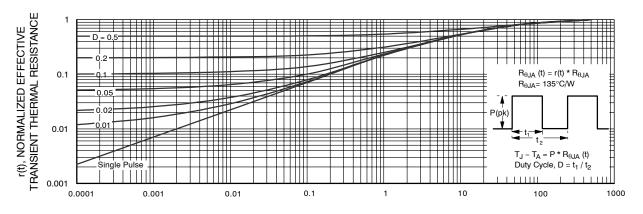
2. Pulse Test Pulse Width < 300 μ s, Duty Cycle < 2.0%


FDS4935A


TYPICAL CHARACTERISTICS

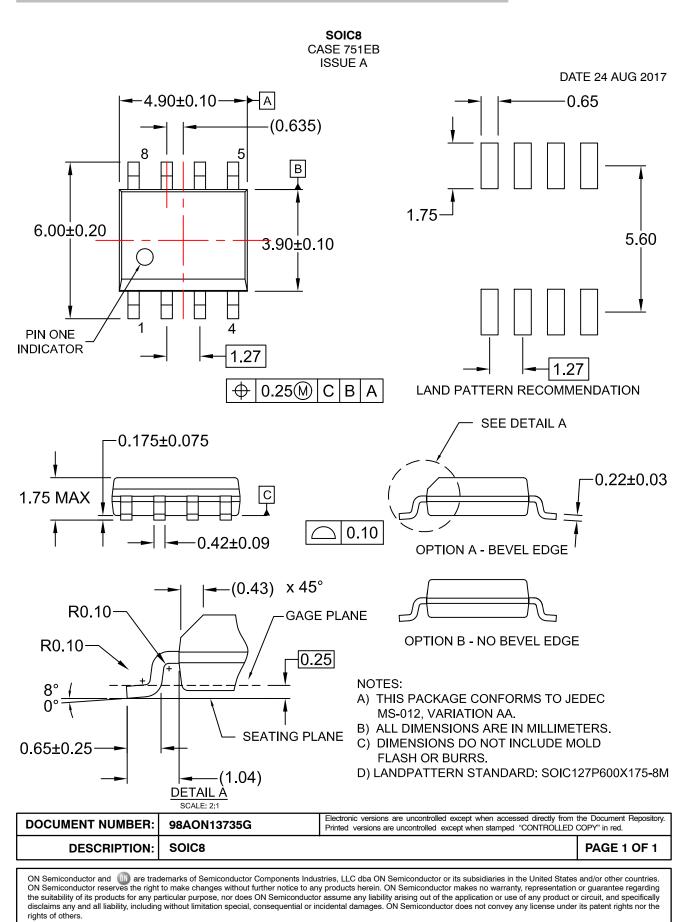
FDS4935A

TYPICAL CHARACTERISTICS (continued)





50 SINGLE PULSE P(pk), PEAK TRANSIENT POWER (W) R_{θJA} = 135°C/W 40 = 25°C 30 20 10 0 0.001 0.01 0.1 10 1 100 t1, TIME (sec)


ORDERING INFORMATION

Device Marking	Device	Package Type	Reel Size	Tape Width	Shipping [†]
FDS4935A	FDS4935A	SOIC8 (Pb-Free)	13"	12 mm	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond