
STI STI

STB10N95K5, STF10N95K5, STP10N95K5, STW10N95K5

N-channel 950 V, 0.65 Ω typ., 8 A Zener-protected SuperMESH[™] 5 Power MOSFETs in D²PAK, TO-220FP, TO-220 and TO-247

Figure 1. Internal schematic diagram

Features

Order codes	V_{DS}	R _{DS(on)} max	I _D	Р _{тот}	
STB10N95K5				130 W	
STF10N95K5	950 V	0.8 Ω	8 A	30 W	
STP10N95K5		- 550 V 0.0 22	0.0 32		130 W
STW10N95K5				130 00	

Datasheet - production data

- Worldwide best FOM (figure of merit)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These N-channel Zener-protected Power MOSFETs are designed using ST's revolutionary avalanche-rugged very high voltage SuperMESH[™] 5 technology, based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance, and ultra-low gate charge for applications which require superior power density and high efficiency.

Table	1.	Device	summary
-------	----	--------	---------

Order codes	Marking	Package	Packaging
STB10N95K5	- 10N95K5	D ² PAK	Tape and reel
STF10N95K5		TO-220FP	
STP10N95K5	1019585	TO-220	Tube
STW10N95K5		TO-247	

DocID024850 Rev 3

1/22

Contents

1	Electrical ratings	3
2	Electrical characteristics 2.1 Electrical characteristics (curves)	
3	Test circuits	
4	Package mechanical data 10	D
5	Packaging mechanical data18	8
6	Revision history	D

1 Electrical ratings

		Va		
Symbol	Symbol Parameter		D ² PAK, TO-220, TO-247	Unit
V _{GS}	Gate- source voltage	±,	30	V
۱ _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	8 ⁽¹⁾	8	А
۱ _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	5 ⁽¹⁾	5	А
I _{DM} ⁽²⁾	Drain current (pulsed)	3	2	А
P _{TOT}	Total dissipation at $T_C = 25 \degree C$ 30 130		W	
I _{AR}	Max current during repetitive or single pulse avalanche	2	2.5	
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}, I_D = I_{AS}, V_{DD} = 50 \text{ V}$)	122		mJ
dv/dt ⁽³⁾	Peak diode recovery voltage slope	4.5		V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; T_C =25 °C)	2500		v
T _j T _{stg}	Operating junction temperature Storage temperature	- 55 to 150		°C

Table 2. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by safe operating area.

3. $I_{SD} \leq$ 8 A, di/dt \leq 100 A/µs, $V_{DS(peak)} \leq V_{(BR)DSS}$.

4. $V_{SD} \leq 760 V$

Table 3. Thermal data

Symbol Parameter		TO-220FP	D ² PAK	TO-220, TO-247	Unit
R _{thj-case}	Thermal resistance junction-case max	4.2	0.96		°C/W
R _{thj-amb}	Thermal resistance junction-amb max	62.5		62.5	°C/W
Rt _{hj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max		30		°C/W

1. When mounted on 1 inch² FR-4, 2 Oz copper board

Electrical characteristics 2

(Tcase =25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	950			v
1	Zero gate voltage, V _{GS} = 0	V _{DS} = 950 V			1	μA
IDSS drain current	V _{DS} = 950 V, T _C =125 °C			50	μA	
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS}=0$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4 A		0.65	0.8	Ω

	Table	4.	On	/off	states
--	-------	----	----	------	--------

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	630	-	pF
C _{oss}	Output capacitance	V _{DS} =100 V, f=1 MHz, V _{GS} =0	-	50	-	pF
C _{rss}	Reverse transfer capacitance	VDS = 100 V, 1 = 1 Wi 12, VGS = 0	-	0.6	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0, V _{DS} = 0 to 760 V	-	77	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$v_{\rm GS} = 0, v_{\rm DS} = 0.0700 v$	-	28	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	6.5	-	Ω
Qg	Total gate charge	V _{DD} = 760 V, I _D = 8 A	-	22	-	nC
Q _{gs}	Gate-source charge	V _{GS} =10 V	-	5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 20)	-	15	-	nC

Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} 1.

2. energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit	
t _{d(on)}	Turn-on delay time	V_{DD} = 475 V, I _D = 4 A, R_G = 4.7 Ω, V_{GS} = 10 V (see Figure 19)	-	22	-	ns	
t _r	Rise time		-	14	-	ns	
t _{d(off)}	Turn-off-delay time		-	51	-	ns	
t _f	Fall time		-	15	-	ns	

Table 6. Switching times

Table	7.	Source	drain	diode
14010				41040

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		8	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 8 A, di/dt = 100 A/µs	-	404		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	5.2		μC
I _{RRM}	Reverse recovery current	(see Figure 21)	-	25.5		А
t _{rr}	Reverse recovery time	I _{SD} = 8 A, di/dt = 100 A/µs	-	596		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	6.9		μC
I _{RRM}	Reverse recovery current	(see Figure 21)	-	23		А

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = $300 \,\mu$ s, duty cycle 1.5%

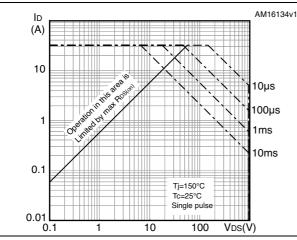
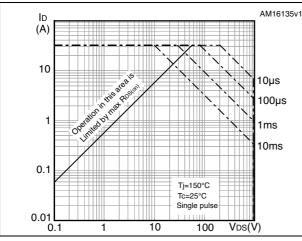
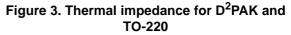
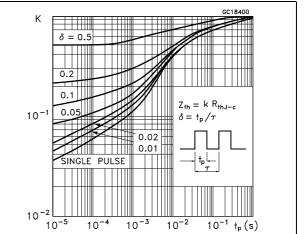
Table 8. Gate-source Zener diode

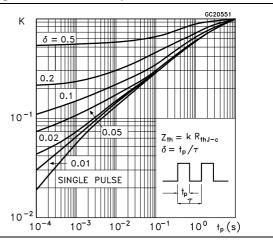
Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_{D}=0$	30	-	-	V

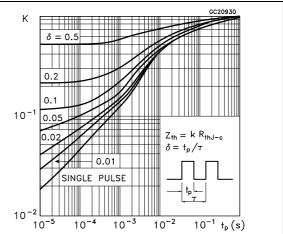
The built-in back-to-back Zener diodes have been specifically designed to enhance not only the device's ESD capability, but also to make them capable of safely absorbing any voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve efficient and cost-effective protection of device integrity. The integrated Zener diodes thus eliminate the need for external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D²PAK and TO-220


Figure 6. Safe operating area for TO-247



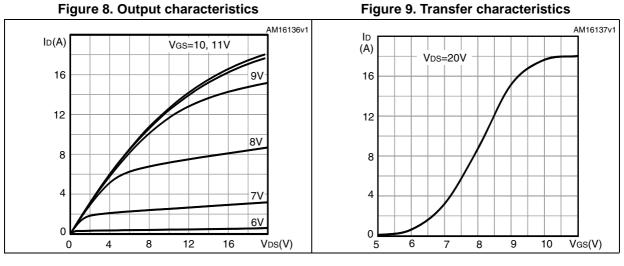


Figure 10. Gate charge vs gate-source voltage

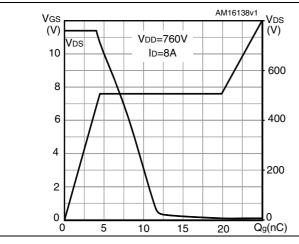


Figure 12. Capacitance variations

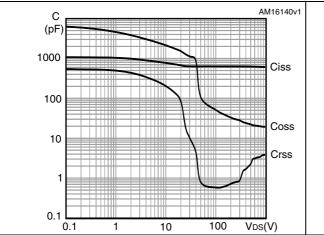
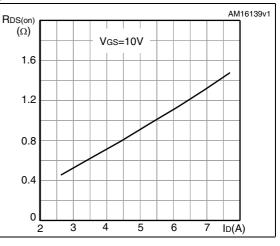
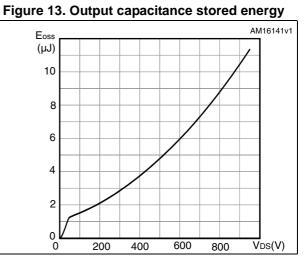




Figure 11. Static drain-source on-resistance

57

Figure 14. Normalized gate threshold voltage vs temperature

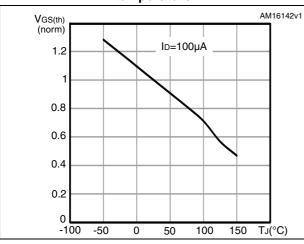


Figure 16. Normalized V_{DS} vs temperature

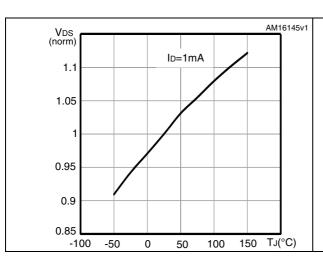
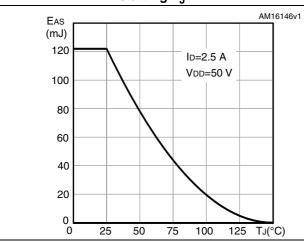



Figure 18. Maximum avalanche energy vs starting T_{.1}

temperature

Figure 15. Normalized on-resistance vs

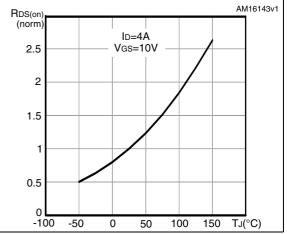
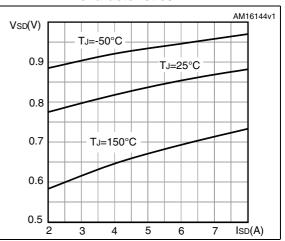



Figure 17. Source-drain diode forward characteristics

8/22

Test circuits 3

Figure 19. Switching times test circuit for resistive load

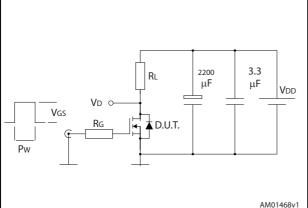
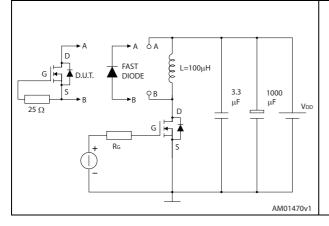
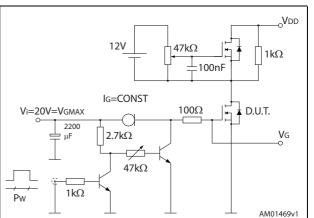
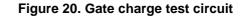


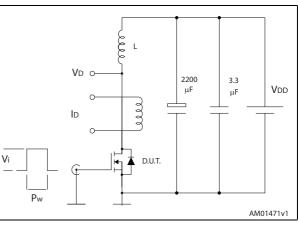
Figure 21. Test circuit for inductive load switching and diode recovery times

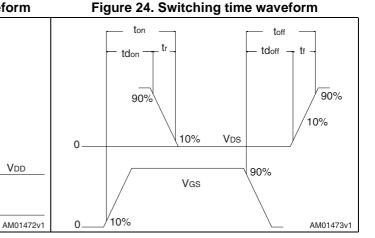



Figure 23. Unclamped inductive waveform


VD

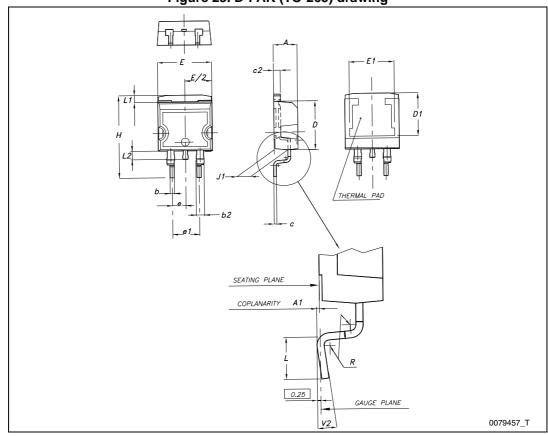
ldм


lр


V(BR)DSS

Vdd

DocID024850 Rev 3


Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/22

Figure 25. D²PAK (TO-263) drawing

Table 9. D²PAK (TO-263) mechanical data

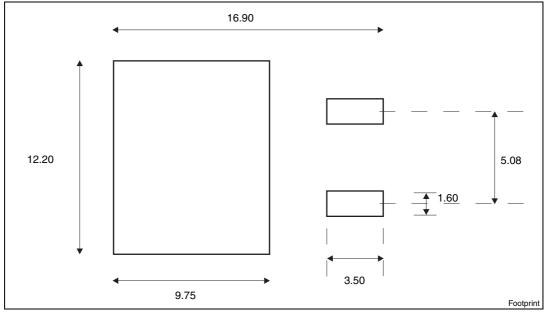

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
с	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85

	Table 9. D-PAK (10-20	55) mechanical uala (Con	lillueu)
Dim		mm	
Dim.	Min.	Тур.	Max.
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Table 9. D²PAK (TO-263) mechanical data (continued)

Figure 26. D²PAK footprint^(a)

a. All dimension are in millimeters

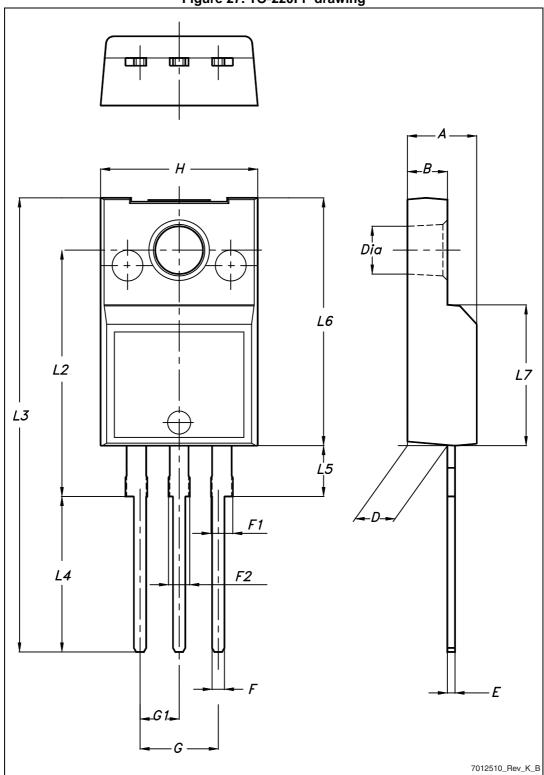


Figure 27. TO-220FP drawing

		220FP mechanical data	
Dim.		mm	
Dini.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 10. TO-220FP mechanical data

14/22

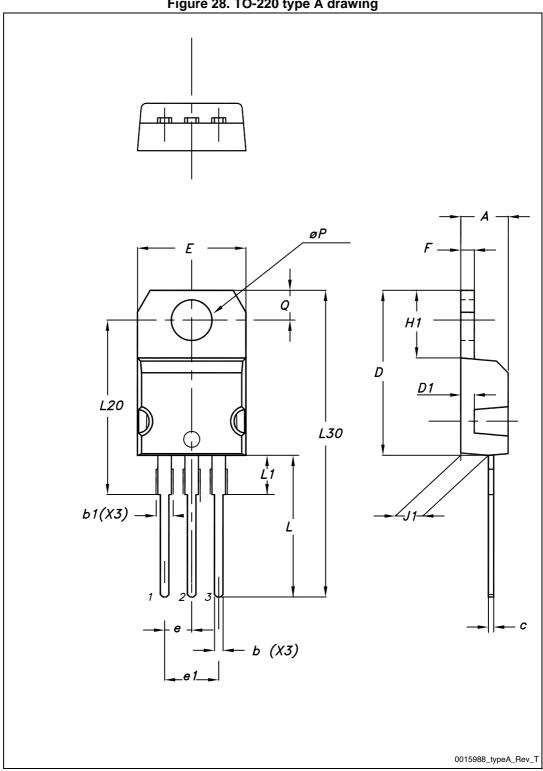


Figure 28. TO-220 type A drawing

		mm	
Dim.			
	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
Øр	3.75		3.85
Q	2.65		2.95

Table 11. TO-220 type A mechanical data

16/22

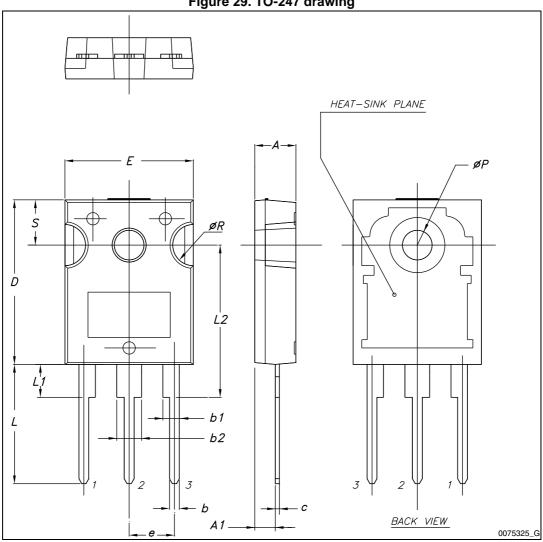


Figure 29. TO-247 drawing

Table 12. TO-247 mechanical data

Dim.		mm.	
Dim.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
с	0.40		0.80
D	19.85		20.15
E	15.45		15.75

Dim		mm.	
Dim.	Min.	Тур.	Max.
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Table 12. TO-247 mechanical data (continued)

18/22

5 Packaging mechanical data

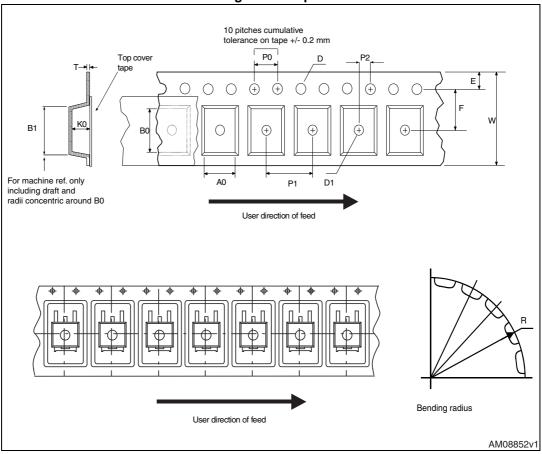


Figure 30. Tape

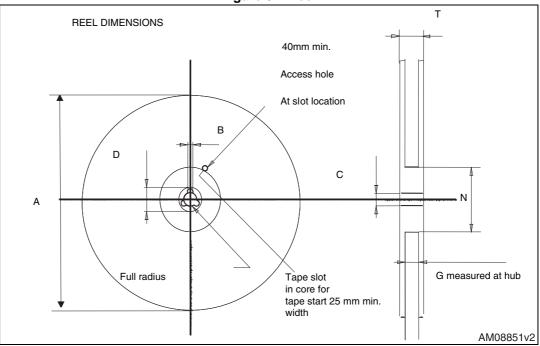


Figure 31. Reel

	Таре			Reel	
Dim	m	m	Dim.	r	ım
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	Ν	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Table 13. D²PAK (TO-263) tape and reel mechanical data

6 Revision history

Date	Revision	Changes
24-Jun-2013	1	First release.
07-Oct-2013	2	 Added: D²PAK package Modified: note <i>4</i> in <i>Table 2</i> Added: Thermal resistance junction-pcb max parameter Modified: typical values in <i>Table 5</i>, 6 and 7 Added: Section 2.1: Electrical characteristics (curves) Updated: Section 4: Package mechanical data Minor text changes
29-Jan-2014	3	 Datasheet status promoted from preliminary data to production data Minor text changes

Table 14. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22

