

SD2931-11

RF power transistors HF/VHF/UHF N-channel MOSFETs

Features

- Gold metallization
- Excellent thermal stability
- Common source configuration
- P_{OUT} = 150 W min. with 14 dB gain @ 175
- Thermally enhanced packaging for lower junction temperatures
- G_{FS} and V_{GS} sort marked on unit

Description

The SD2931-11 is a gold metallized N-channel MOS field-effect RF power transistor. Being electrically identical to the standard SD2931 MOSFET, it is intended for use in 50 V dc large signal applications up to 230 MHz.

The SD2931-11 is mechanical compatible to the SD2931 but offers in addition a better thermal capability (25% lower thermal resistance), representing the best-in-class transistors for ISM applications, where reliability and ruggedness are critical factors.

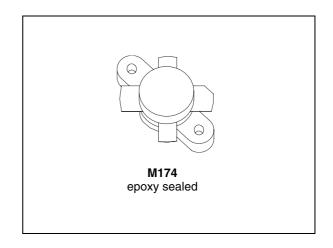


Figure 1. Pin connection

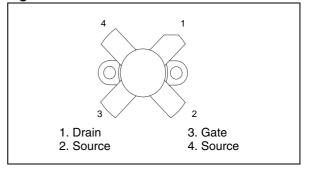


Table 1. Device summary

Order code	Order code Marking		Packing	
SD2931-11	SD2931-11	M174 epoxy sealed	Tray	

March 2010 Doc ID 17329 Rev 1 1/18

Content SD2931-11

Content

1	Electrical data
	1.1 Maximum ratings
	1.2 Thermal data
2	Electrical specification
3	Impedance data6
4	Typical performance
5	Typical performance 175 MHz
6	Test circuit
7	Typical performance 30 MHz
8	Test circuit 30 MHz
9	Package mechanical data
10	Revision history

SD2931-11 Electrical data

1 Electrical data

1.1 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain source voltage	125	V
V _{DGR}	Drain-gate voltage ($R_{GS} = 1M\Omega$)	125	V
V _{GS}	Gate-source voltage	±20	V
I _D	Drain current	20	Α
P _{DISS}	Power dissipation	389	W
T _j	Max. operating junction temperature	200	°C
T _{STG}	Storage temperature	-65 to +150	°C

1.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction -case thermal resistance	0.45	°C/W

2 Electrical specification

 $(T_{CASE} = 25 \, ^{\circ}C)$.

Table 4. Static

Symbol		Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	$V_{GS} = 0 V$	$I_{DS} = 100 \text{ mA}$		125			V
I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$				50	μΑ
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$	V _{DS} = 0 V				nA
V _{GS(Q)} ⁽¹⁾	V _{DS} = 10 V	$I_D = 250 \text{ mA}$		see table below			V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 10 A				3.0	V
G _{FS} *	V _{DS} = 10 V	I _D = 5 A		see	table be	elow	mho
C _{ISS}	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$	f = 1 MHz		480		pF
C _{OSS}	V _{GS} = 0 V	V _{DS} = 50 V	f = 1 MHz		190		pF
C _{RSS}	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$	V _{DS} = 50 V f = 1 MHz		18		pF

^{1.} $V_{GS(Q)}$ and G_{FS} sorted with alpha/numeric code marked on unit.

Table 5. Dynamic

Symbol	Test conditions	Min.	Тур.	Max.	Unit
P _{OUT}	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $f = 175 \text{ MHz}$	150			W
G _{PS}	$V_{DD} = 50 \text{ V } I_{DQ} = 250 \text{ mA} P_{OUT} = 150 \text{ W } f = 175 \text{ MHz}$	14	15		dB
h _D	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{OUT} = 150 \text{ W f} = 175 \text{ MHz}$	55	65		%
	V_{DD} = 50 V I_{DQ} = 250 mA P_{OUT} = 150 W f = 175 MHz all phase angles	10:1			VSW R

4/18

Table 6. V_{GS} and G_{FS} sorts

Code	V _{GS}		G _{FS}		Code	V_{GS}		G _{FS}	
Code	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
Α	2.4	2.65	5.0	5.5	J	2.65	3.15	6.5	7.0
В	2.4	2.65	5.5	6.0	K	2.65	3.15	7.0	7.5
С	2.4	2.65	6.0	6.5	L	2.65	3.15	7.5	8.0
D	2.4	2.65	6.5	7.0	М	3.15	3.3	5.0	5.5
E	2.4	2.45	7.0	7.5	N	3.15	3.3	5.5	6.0
F	2.4	2.65	7.5	8.0	0	3.15	3.3	6.0	6.5
G	2.65	3.15	5.0	5.5	Р	3.15	3.3	6.5	7.0
Н	2.65	3.15	5.5	6.0	Q	3.15	3.3	7.0	7.5
I	2.65	3.15	6.0	6.5	R	3.15	3.3	7.5	8.0

Impedance data SD2931-11

3 Impedance data

Figure 2. Impedance data

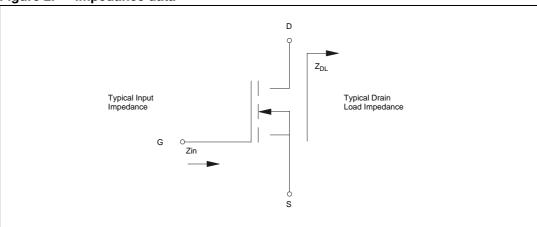
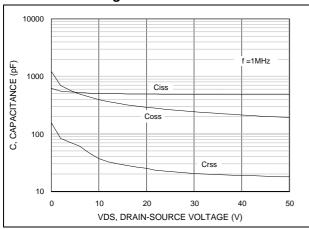


Table 7. Impedance data


Freq	Z _{IN} (Ω)	Z _{DL} (Ω)
30 MHz	1.7 - j 5.7	6.8 + j 0.9
175 MHz	1.2 - j 2.0	2.0 + j 2.4

SD2931-11 Typical performance

4 Typical performance

Figure 3. Capacitance vs drain-source voltage

Figure 4. Drain current vs gate voltage

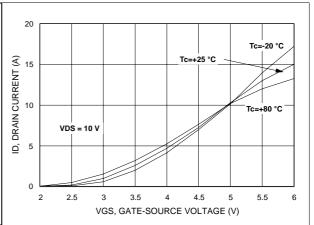
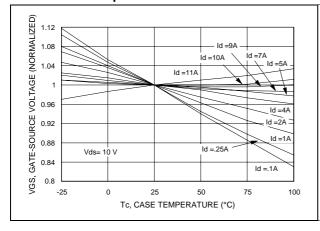
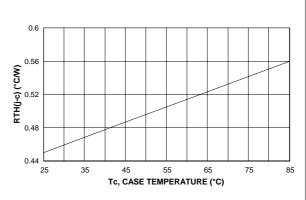
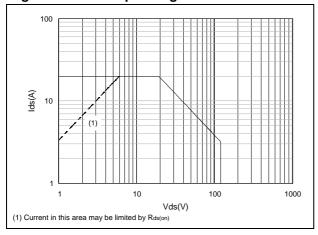
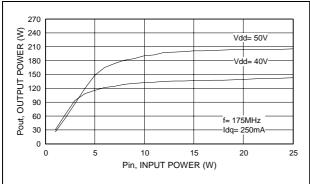



Figure 5. Gate-source voltage vs case temperature

Figure 6. Maximum thermal resistance vs case temperature


Figure 7. Safe operating area

5 Typical performance 175 MHz

Figure 8. Output power vs input power

Figure 9. Output power vs input power at different temperatures

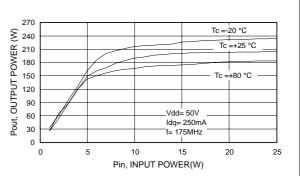


Figure 10. Power gain vs output power

18
(B)
16
N 14
V 5
N 12
N 12
N 12
N 12
N 16=50V
Idq=250mA
f=175Mhz
0 50 100 150 200 250
Pout, OUTPUT POWER (W)

Figure 11. Efficiency vs output power

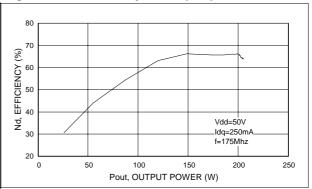


Figure 12. Output power vs supply voltage

Vdd,DRAIN VOLTAGE(V)

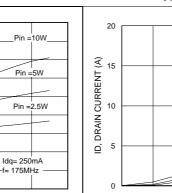
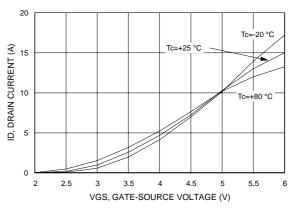



Figure 13. Drain current vs gate-source voltage

270

240

30

24

Test circuit SD2931-11

6 Test circuit

Figure 14. 175 MHz test circuit schematic (production test circuit)

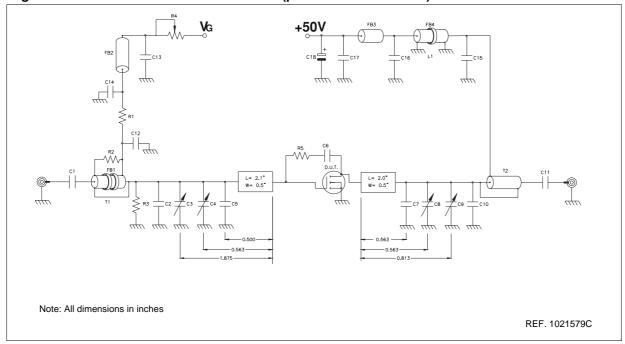
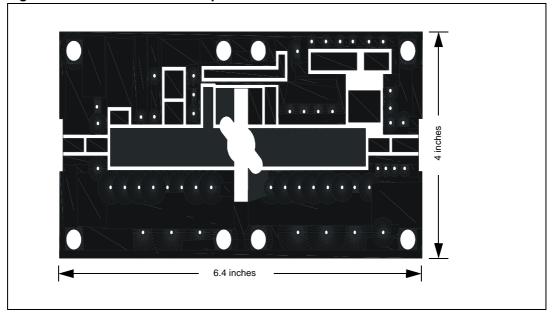


Table 8. Component part list

Component	Description	
T1	4:1 transformer, 25 ohm flexible coax .090 OD 6" long	
T2	1:4 transformer, 25 ohm semi-rigid coax .141 OD 6" long	
FB1	Toroid X 2, 0.5" OD .312" ID 850μ 2 turns	
FB2, FB3	VK200	
FB4	Shield bead, 1" OD 0.5" ID 850μ 3 turns	
L1 1/4 wave choke, 50 ohm semi-rigid coax .141 OD 12" Lo		
PCB	0.62" woven fiberglass, 1 oz. copper, 2 sides, εr = 2.55	
R1, R3	470 ohm 1 W chip resistor	
R2	360 ohm 1/2 W resistor	
R4	20 Kohm 10 turn potentiometer	
R5	560 ohm 1 W resistor	
C1, C11	470 pF ATC chip cap	
C2	43 pF ATC chip cap	
C3, C8, C9	Arco 404, 12-65 pF	
C4	Arco 423, 16-100 pF	


10/18 Doc ID 17329 Rev 1

SD2931-11 Test circuit

Table 8. Component part list (continued)

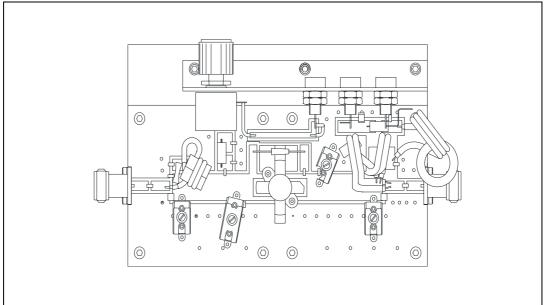

Component	Description
C5	120 pF ATC chip cap
C6	0.01 μF ATC chip cap
C7	30 pF ATC chip cap
C10	91 pF ATC chip cap
C12, C15	1200 pF ATC chip cap
C13, C14,C16, C17	0.01 μF / 500 V chip cap
C18	10 μF 63 V electrolytic capacitor

Figure 15. 175 MHz test circuit photomaster

Test circuit SD2931-11

Figure 16. 175 MHz test circuit

577

7 Typical performance 30 MHz

Figure 17. Output power vs input power

250 W 200 Vdd = 50 V Vdd = 50 V Vdd = 40 V Vdd = 40 V F = 30 MHz IDQ = 250 mA IDQ = 250 mA Pin, INPUT POWER (W)

Figure 18. Power gain vs output power

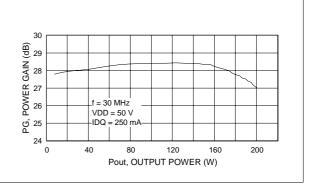


Figure 19. Efficiency vs output power

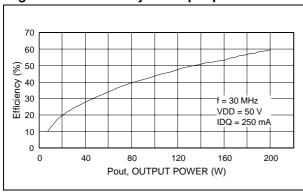


Figure 20. Output power vs supply voltage

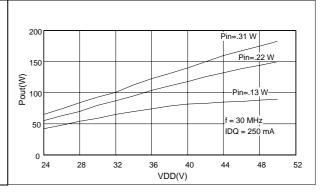
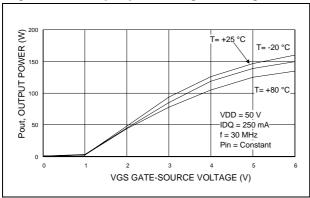



Figure 21. Output power vs gate voltage

577

Test circuit 30 MHz SD2931-11

8 Test circuit 30 MHz

Figure 22. 30 MHz test circuit schematic (engineering test circuit)

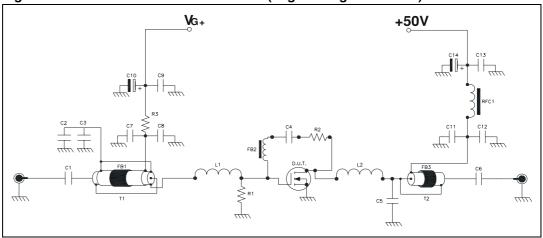


Figure 23. 30 MHz test circuit component part list

Symbol	Description
T1	9:1 transformer, 25 Ω flexible coax with extra shield .090 OD 15" long
T2	1:4 transformer, 50 Ω flexible coax .225 OD 15" long
FB1	Toroid 1.7" OD .30" ID 220 μ 4 turns
FB2	Surface mount EMI shield bead
FB3	Toroid 1.7" OD .300" ID 220μ 3 turns
RFC1	Toroid 0.5" OD 0.30" ID 125μ 4 turns 12 awg wire
PCB	0.62" Woven Fiberglass, 1 oz. Copper, 2 Sides, εr = 2.55
R1, R3	1 KΩ1 W chip resistor
R2	680 Ω 3 W wirewound resistor
C1,C4,C6,C7,C8, C9,C11,C12,C13	0.1 μF ATC chip cap
C2,C3	750 pF ATC chip cap
C5	470 pF ATC chip cap
C10	10 μF 63 V electrolytic capacitor
C14	100 μF 63 V electrolytic capacitor

9 Package mechanical data

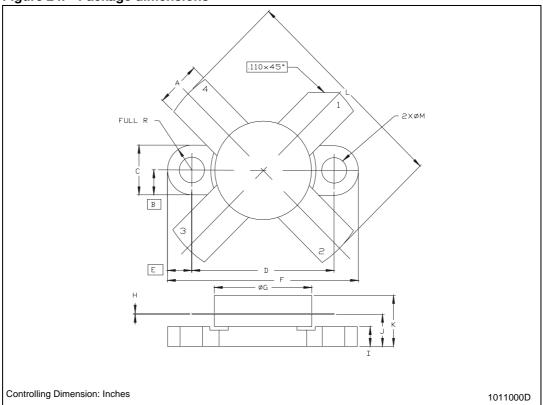

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 9. M174 (0.500 DIA 4/L N/HERM W/FLG) mechanical data

Dim		mm.			Inch			
Dim.	Min	Тур	Max	Min	Тур	Max		
Α	5.56		5.584	0.219		0.230		
В		3.18			0.125			
С	6.22		6.48	0.245		0.255		
D	18.28		18.54	0.720		0.730		
E		3.18			0.125			
F	24.64		24.89	0.970		0.980		
G	12.57		12.83	0.495		0.505		
Н	0.08		0.18	0.003		0.007		
I	2.11		3.00	0.083		0.118		
J	3.81		4.45	0.150		0.175		
K			7.11			0.280		
L	25.53		26.67	1.005		1.050		
М	3.05		3.30	0.120		0.130		

Figure 24. Package dimensions

16/18 Doc ID 17329 Rev 1

SD2931-11 Revision history

10 Revision history

Table 10. Document revision history

Date	Revision	Changes
30-Mar-2010	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 17329 Rev 1

