Power MOSFET

40 V, 3.7 m Ω , 123 A, Single N–Channel DPAK

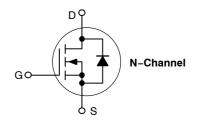
Features

- Low R_{DS(on)} to Minimize Conduction Losses
- MSL 1 @ 260°C
- 100% Avalanche Tested
- AEC Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

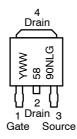
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Cur-		T _C = 25°C	I _D	123	Α
rent (R _{θJC}) (Notes 1 & 3)		T _C = 85°C		95	
Power Dissipation $(R_{\theta JC})$ (Note 1)	Steady	T _C = 25°C	P _D	107	W
Continuous Drain Cur-	State	T _A = 25°C	I _D	24	Α
rent ($R_{\theta JA}$) (Notes 1, 2, 3)		T _A = 85°C		18.5	
Power Dissipation (R _{θJA}) (Notes 1 & 2)		T _A = 25°C	P _D	4.0	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	400	Α
Current Limited by Package T _A = 25°C (Note 3)			I _{DmaxPkg}	100	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Di	I _S	100	Α		
Single Pulse Drain-to-Source Avalanche Energy (V_{GS} = 10 V, L = 0.3 mH, $I_{L(pk)}$ = 46.2 A, R_G = 25 Ω)			E _{AS}	320	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and suty cycle.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	3.7 m Ω @ 10 V	100 A
40 V	5.5 mΩ @ 4.5 V	123 A

MARKING DIAGRAMS & PIN ASSIGNMENT

Y = Year WW = Work Week 5890NL = Device Code G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	37	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μA		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$ $V_{DS} = 40 V$	T _J = 25°C			1.0	μΑ
			T _J = 150°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 4)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 0$	= 250 μΑ	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 50 \text{ A}$			2.9	3.7	mΩ
					4.4	5.5	1
Forward Transconductance	gFS	V _{DS} = 15 V, I _D = 15 A			16.3		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			4760		pF
Output Capacitance	C _{oss}				580		1
Reverse Transfer Capacitance	C _{rss}	- 53 =-			385		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 50 A			84		nC
Total Gate Charge	Q _{G(TOT)}				42		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _C	_{IS} = 15 V,		4.2		7
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_D = 50 \text{ A}$			13.7		1
Gate-to-Drain Charge	Q_{GD}				18.8		1
SWITCHING CHARACTERISTICS (Not	e 5)						
Turn-On Delay Time	t _{d(on)}	V_{GS} = 10 V, V_{DS} = 20 V, I_{D} = 50 A, R_{G} = 2.0 Ω			12		ns
Rise Time	t _r				35		1
Turn-Off Delay Time	t _{d(off)}				38		1
Fall Time	t _f				11		1

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS								
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.86	1.2	V	
		V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.78	1.0		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 50 \text{ A}$			35		ns	
Charge Time	ta				19			
Discharge Time	tb				16			
Reverse Recovery Charge	Q_{RR}				34		nC	

TYPICAL PERFORMANCE CURVES

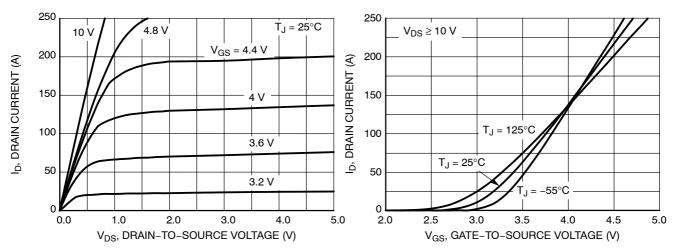


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

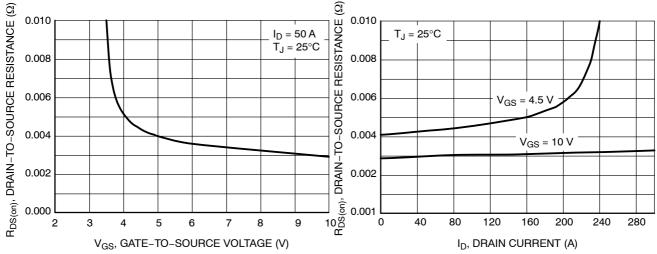


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

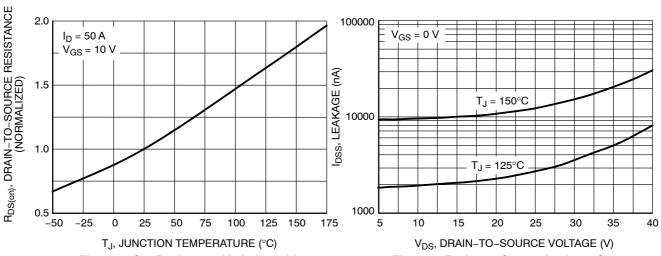


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

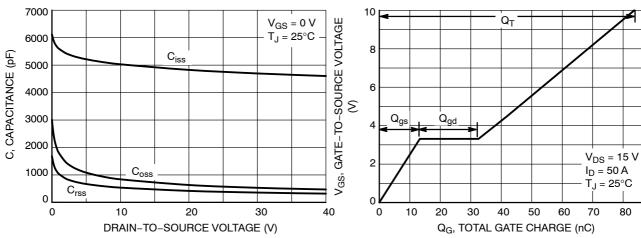


Figure 7. Capacitance Variation

Figure 8. Gate-To-Source Voltage vs.
Total Charge

90

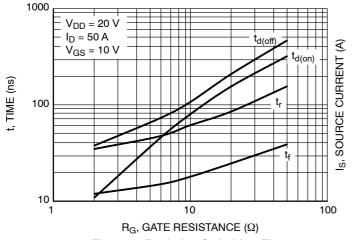


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

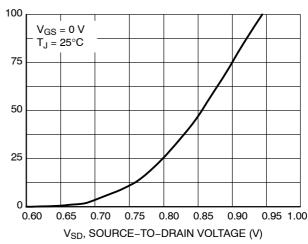


Figure 10. Diode Forward Voltage vs. Current

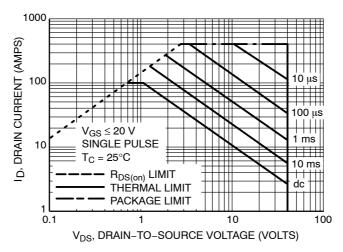


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES

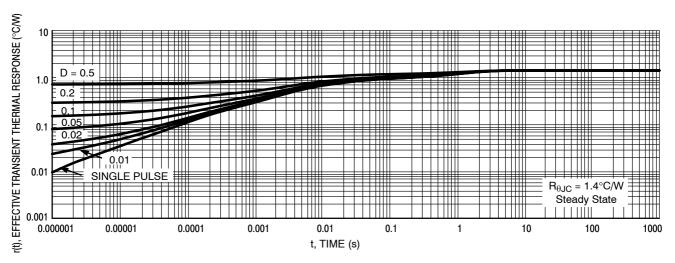


Figure 12. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD5890NLT4G	DPAK (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Α

В

Н

Δ1

STYLE 2:

+ h3

 \bigcirc

TOP VIEW

DETAIL A ROTATED 90° CW

L3

b₂

е

L2 GAUGE

STYLE 1:

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1

DETAIL A

DATE 21 JUL 2015

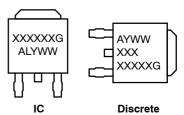
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

BOTTOM VIEW C **SIDE VIEW** ⊕ 0.005 (0.13) M C Z C SEATING **BOTTOM VIEW** ALTERNATE CONSTRUCTIONS

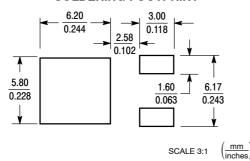
STYLE 5:


Z

PIN 1. BASE 2. COLLECTOR PIN 1. GATE 2. DRAIN PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE PIN 1. GATE 2. ANODE 3. EMITTER SOURCE 3. ANODE 4. CATHODE 3. GATE 3. CATHODE 4. COLLECTOR 4. ANODE 4. DRAIN 4. ANODE STYLE 6: STYLE 7: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. GATE 2. COLLECTOR PIN 1. N/C 2. CATHODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE 3. RESISTOR ADJUST 3. CATHODE 4. ANODE 4. CATHODE

STYLE 4:

STYLE 3:


GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α = Wafer Lot L Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and OOSEM) are trademarks of Semiconductor Components Industries I.I.C. dba onsemi or its subsidiaries in the United States and/or other countries onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com