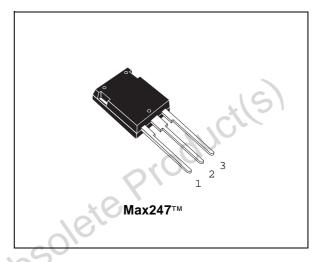


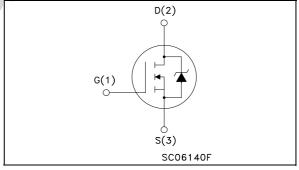
N-CHANNEL 100V - 0.009 Ω - 140A MAX247™ MESH OVERLAY™ POWER MOSFET

VDSS	R _{DS(on)}	ID
100V	<0.011Ω	140A
	100V	

- TYPICAL $R_{DS}(on) = 0.009\Omega$
- STANDARD THRESHOLD DRIVE
- 100% AVALANCHE TESTED


DESCRIPTION

Using the latest high voltage MESH OVERLAY[™] process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.


APPLICATIONS

- HIGH CURRENT, HIGH SWITCHING SPEED
- SWITCH MODE POWER SUPPLY (SMPS)

teprodu

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage ($V_{GS} = 0$)	100	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
V _{GS}	Gate- source Voltage	± 20	V
ID	Drain Current (continuos) at $T_C = 25^{\circ}C$	140	A
ID	Drain Current (continuos) at T _C = 100°C	99	A
I _{DM} (●)	Drain Current (pulsed)	560	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	450	W
	Derating Factor	3	W/°C
E _{AS} (1)	Single Pulse Avalanche Energy	2900	mJ
dv/dt (2)	Peak Diode Recovery voltage slope	5	V/ns
T _{stg}	Storage Temperature	-55 to 175	°C
Ti	Operating Junction Temperature	-55 to 175	°C

August 2001

(1) Starting $I_j = 25$ °C, $I_D = 70A$, $V_{DD} = 50V$ (2) $I_{SD} \le 140A$, di/dt $\le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$.

THERMAL DATA

Rthj-amb	Thermal Resistance Junction-case	Max	0.33	°C/W
	Thermal Resistance Junction-ambient	Max	30	°C/W
Тј	Maximum Lead Temperature For Soldering Purpose	Тур	300	°C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	100			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA
ON (1)				00	.	

ON (1)

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 70 A		0.009	0.011	Ω

DYNAMIC

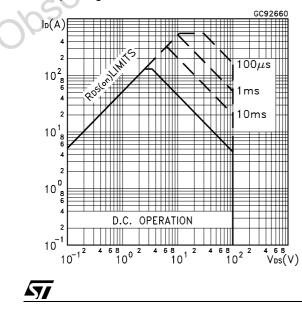
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} = 20 V I _D = 70 A		50		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		12600 2100 690		pF pF pF
	je r	1		<u>I</u>		
SO						

ELECTRICAL CHARACTERISTICS (continued)

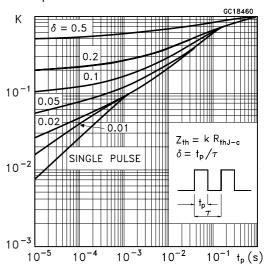
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			40 150		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =50V I _D =140A V _{GS} =10V (see test circuit, Figure 2)		450 70 170	600	nC nC nC

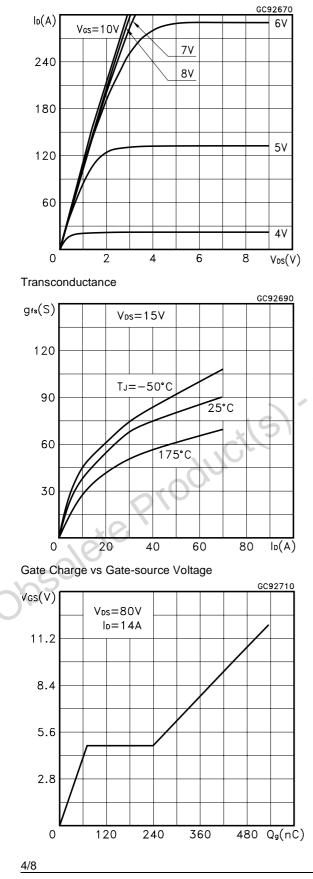
SWITCHING OFF

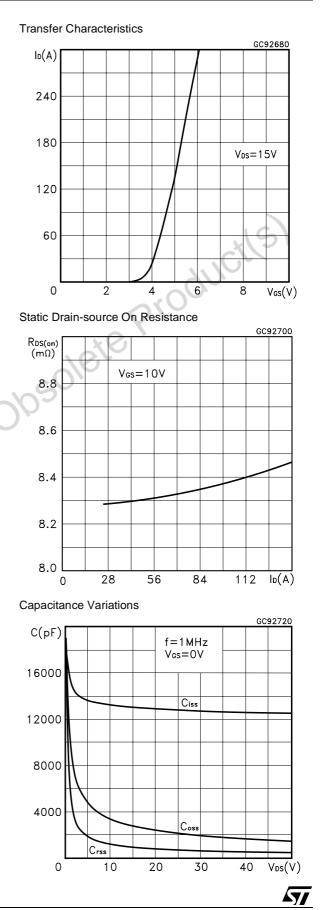

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD}=50 \ V & I_{D}=70 \ A \\ R_{G}=4.7\Omega, & V_{GS}=10 \ V \\ (\text{Resistive Load, Figure 1}) \end{array} $		465 270	JCr.	ns ns

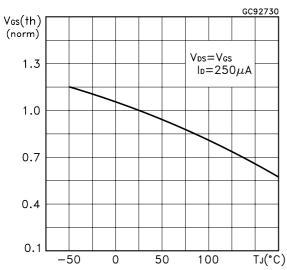
SOURCE DRAIN DIODE

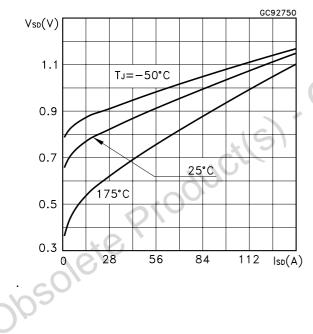

Symbol	Parameter	Test Conditions	Min. Typ.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)	6016		140 560	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 140 A V _{GS} = 0		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$ I_{SD} = 140 \text{ A} \qquad di/dt = 100 \text{A}/\mu\text{s} \\ V_r = 20 \text{ V} \qquad T_j = 150^\circ\text{C} \\ (\text{Inductive Load, Figure 3}) $		275 2 15	ns μC Α

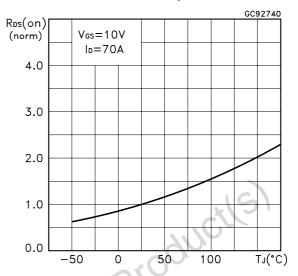
(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.


Safe Operating Area

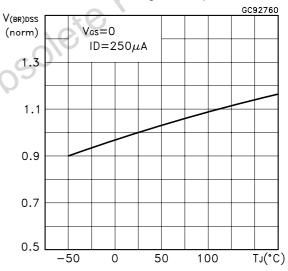



Thermal Impedance





Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature

Fig. 1: Switching Times Test Circuits For Resistive Load

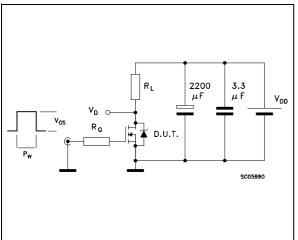
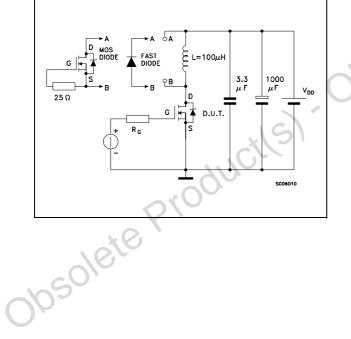
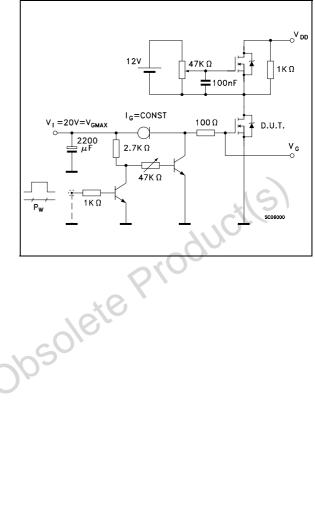
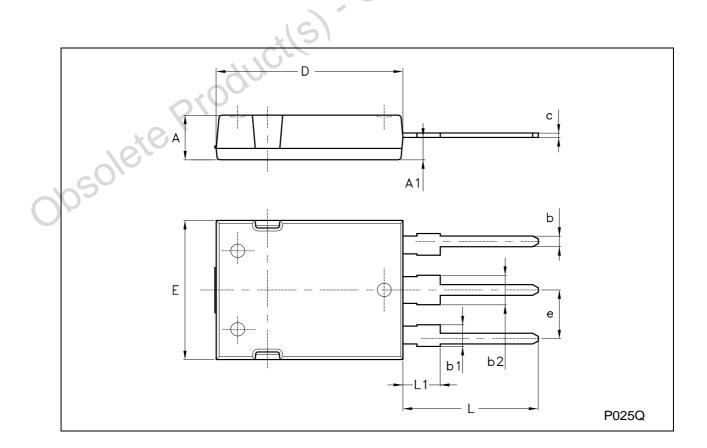


Fig. 3: Test Circuit For Diode Recovery Behaviour


Fig. 2: Gate Charge test Circuit

57

DIM.		mm			inch			
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	4.70		5.30					
A1	2.20		2.60					
b	1.00		1.40					
b1	2.00		2.40			IG		
b2	3.00		3.40			AC		
С	0.40		0.80		71)			
D	19.70		20.30					
е	5.35		5.55		210			
E	15.30		15.90	×C				
L	14.20		15.20	16,				
L1	3.70		4.30	0,				

Max247 MECHANICAL DATA

besolete Product(S) - Obsolete Product(S) besolete Product(S) - Obsolete Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

8/8