

STB46NF30, STP46NF30, STW46NF30

N-channel 300 V, 0.063 Ω typ., 42 A STripFET™ II Power MOSFETs in D²PAK, TO-220 and TO-247 packages

Datasheet - production data

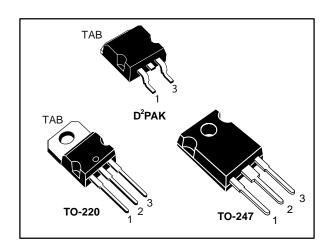
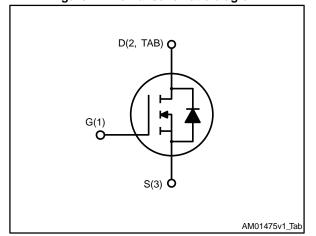



Figure 1: Internal schematic diagram

Features

Order code	V _{DSS}	R _{DS(on)} max.	ΙD	Pw
STB46NF30				
STP46NF30	300 V	< 0.075 Ω	42 A	300 W
STW46NF30				

- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge

Applications

Switching applications

Description

These Power MOSFETs have been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the devices suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STB46NF30		D²PAK	Tape and reel
STP46NF30	46NF30	TO-220	Tubo
STW46NF30		TO-247	Tube

August 2016 DocID018493 Rev 2 1/20

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	9
4	Packag	e information	10
	4.1		
	4.2	D ² PAK (TO-263) packing information	13
	4.3	TO-220 type A package information	15
	4.4	TO-247 package information	17
5	Revisio	n history	19

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	300	V
V_{GS}	Gate-source voltage	±20	V
I _D	Drain current (continuous) at T _C = 25 °C	42	Α
I _D	Drain current (continuous) at T _C = 100 °C	27	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	168	Α
Ртот	Total dissipation at T _C = 25 °C	300	W
	Derating factor	2	W/°C
dv/dt (2)	Peak diode recovery voltage slope	10	V/ns
TJ	Operating junction temperature range	FF to 17F	°C
T _{stg}	Storage temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Dozomotov		I I m !4		
Symbol	Parameter	D²PAK	TO-220	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case	0.5		°C/W	
R _{thj-amb}	Thermal resistance junction-ambient max	30 62.5 50		50	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30		°C/W	
TJ	Maximum lead temperature for soldering purpose	300		°C	

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	26	Α
Eas	Single pulse avalanche energy (starting Tj = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	290	mJ

Notes:

 $^{(1)}$ Pulse width limited by T_{jmax}

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}$ I_{SD} \leq 34 A, di/dt \leq 200 A/ μ s, V_{DD} = 80% V(BR)DSS,V_{DS} peak < V(BR)DSS

 $^{^{(1)}}$ When mounted on FR-4 board of 1inch², 2oz Cu.

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	300			V
		V _{GS} = 0 V, V _{DS} = 300 V			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 300 \text{ V}$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$			10	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}$		0.063	0.075	Ω

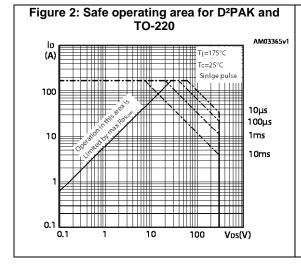
Notes:

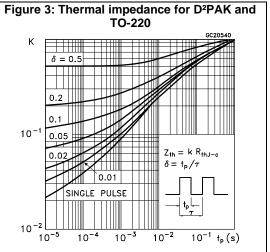
Table 6: Dynamic

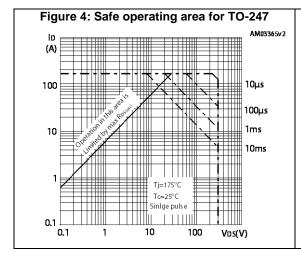
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3200	•	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0$	-	442	ı	pF
C _{rss}	Reverse transfer capacitance	V	-	57	-	pF
t _{d(on)}	Turn-on delay time	V _{DD} = 150 V, I _D = 17 A,	-	25	-	ns
tr	Rise time	$V_{DD} = 150 \text{ V}, I_{D} = 17 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	38	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 16: "Test circuit for	-	80	-	ns
t _f	Fall time	resistive load switching times")	-	46	-	ns
Qg	Total gate charge	V _{DD} = 240 V, I _D = 34 A	-	90	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	16		nC
Q_{gd}	Gate-drain charge	(see Figure 17: "Test circuit for gate charge behavior")	-	40	-	nC

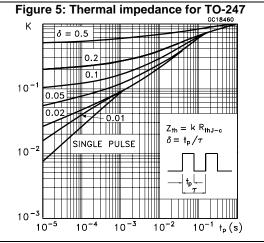
⁽¹⁾Defined by design, not subject to production test.

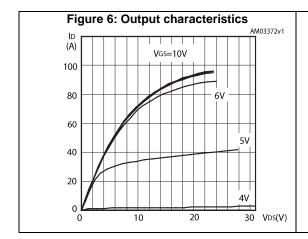
Table 7: Source-drain diode

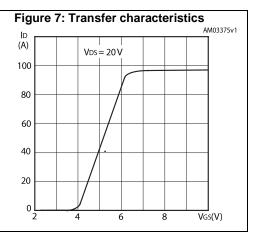

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		34	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		136	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 34 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 34 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	215		ns
Q _{rr}	Reverrse recovery charge	V _{DD} = 60 V (see Figure 18: "Test circuit for inductive load switching and	-	1.7		μC
I _{RRM}	Reverse recovery current	diode recovery times")	-	16		Α
t _{rr}	Reverse recovery time	$I_{SD} = 34 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	252		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 18: "Test circuit for	-	2.3		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	19		Α

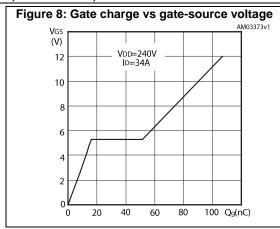

Notes:


⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%


2.2 Electrical characteristics (curves)





6/20 DocID018493 Rev 2

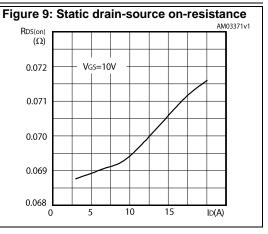
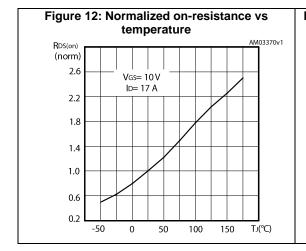
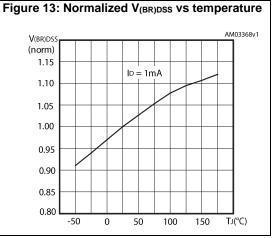
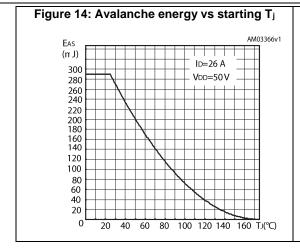


Figure 10: Capacitance variations

AM03374v1


Ciss


Coss


Coss

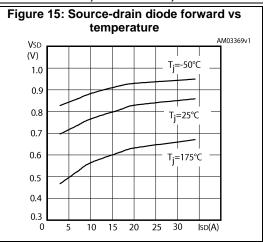
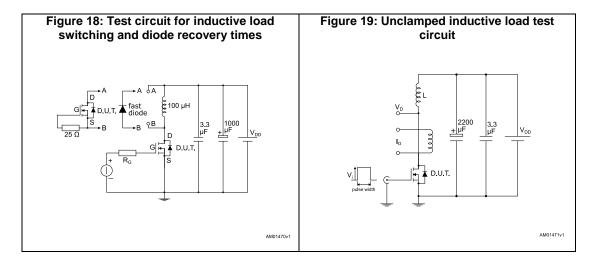

Crss

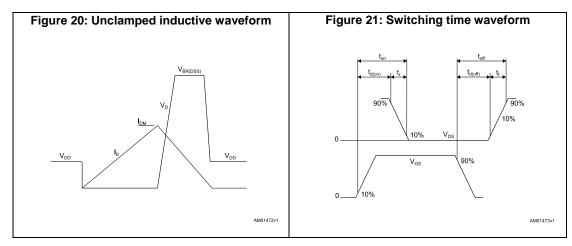
Figure 11: Normalized gate threshold voltage vs temperature <u>AM</u>03367v1 VGS(th) (norm) ID= 250 μA 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 -50 TJ(°C) 0 50 100 150

8/20 DocID018493 Rev 2

3 Test circuits

Figure 16: Test circuit for resistive load switching times


Figure 17: Test circuit for gate charge behavior


Figure 17: Test circuit for gate charge behavior

Vos pulse width D.U.T.

AM01468v1

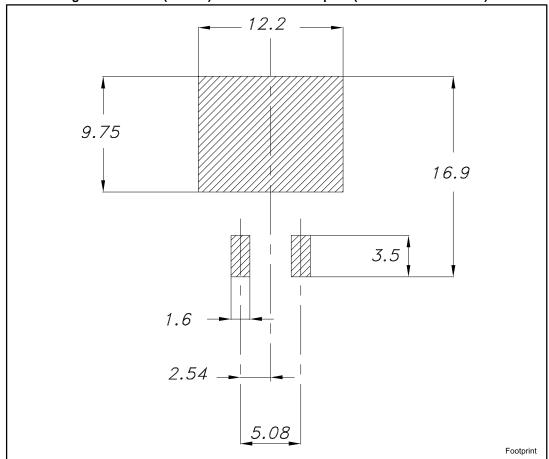
AM01468v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D²PAK (TO-263) package information

E1 c2-*L1* THERMAL PAD SEATING PLANE COPLANARITY A1 0.25 GAUGE PLANE V2_ 0079457_A_rev22


Figure 22: D²PAK (TO-263) type A package outline

47/

Table 8: D²PAK (TO-263) type A package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29	_	2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 23: D²PAK (TO-263) recommended footprint (dimensions are in mm)

577

4.2 D²PAK (TO-263) packing information

Figure 24: Tape outline

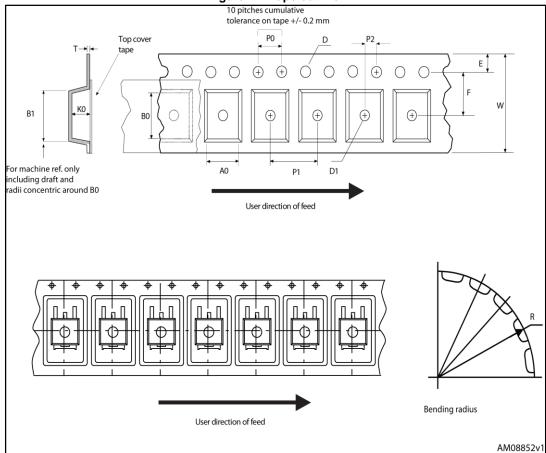


Figure 25: Reel outline

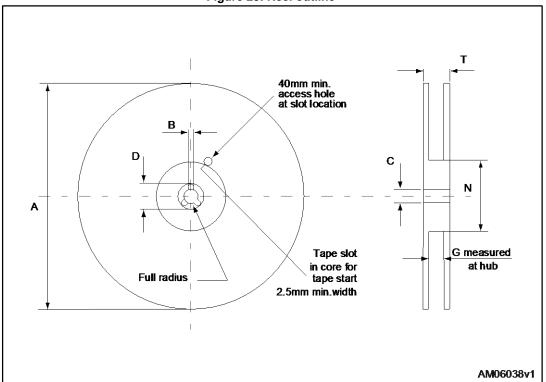
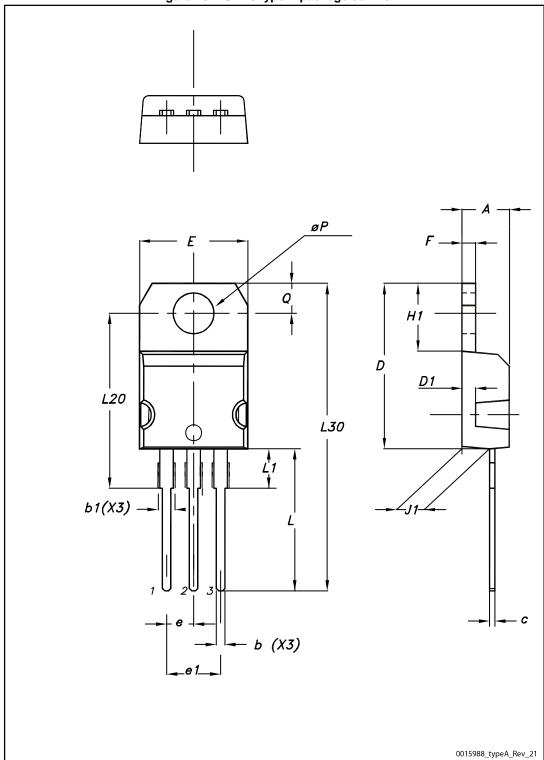



Table 9: D2PAK tape and reel mechanical data

Таре			Reel		
Dim.	m	nm	Dim.	m	m
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

4.3 TO-220 type A package information

Figure 26: TO-220 type A package outline

577

Table 10: TO-220 type A mechanical data

Table 101 10 220 type // moonamour data						
Dim		mm				
Dim.	Min.	Тур.	Max.			
А	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.55			
С	0.48		0.70			
D	15.25		15.75			
D1		1.27				
E	10.00		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	1.23		1.32			
H1	6.20		6.60			
J1	2.40		2.72			
L	13.00		14.00			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
øΡ	3.75		3.85			
Q	2.65		2.95			

477

4.4 TO-247 package information

Figure 27: TO-247 package outline

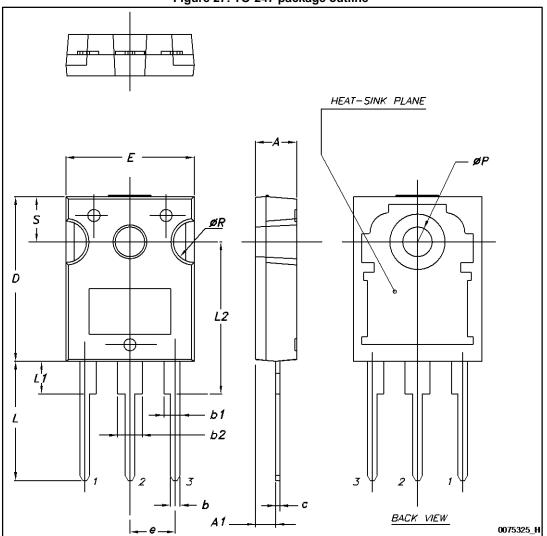


Table 11: TO-247 package mechanical data

Tallie Land Land Land Land				
Dim.	mm			
	Min.	Тур.	Max.	
А	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
E	15.45		15.75	
е	5.30	5.45	5.60	
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S	5.30	5.50	5.70	

DocID018493 Rev 2

18/20

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
28-Sep-2012	1	First release.	
24-Aug-2016	2	Modified: Table 7: "Source-drain diode"	
		Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

